#include "LightLoop.cs.hlsl" #include "../../Sky/SkyVariables.hlsl" StructuredBuffer g_vLightListGlobal; // don't support Buffer yet in unity #define DWORD_PER_TILE 16 // See dwordsPerTile in LightLoop.cs, we have roomm for 31 lights and a number of light value all store on 16 bit (ushort) CBUFFER_START(UnityTilePass) uint _NumTileFtplX; uint _NumTileFtplY; // these uniforms are only needed for when OPAQUES_ONLY is NOT defined // but there's a problem with our front-end compilation of compute shaders with multiple kernels causing it to error //#ifdef USE_CLUSTERED_LIGHTLIST float4x4 g_mInvScrProjection; float g_fClustScale; float g_fClustBase; float g_fNearPlane; float g_fFarPlane; int g_iLog2NumClusters; // We need to always define these to keep constant buffer layouts compatible uint g_isLogBaseBufferEnabled; //#endif //#ifdef USE_CLUSTERED_LIGHTLIST uint _NumTileClusteredX; uint _NumTileClusteredY; CBUFFER_END StructuredBuffer g_vLayeredOffsetsBuffer; // don't support Buffer yet in unity StructuredBuffer g_logBaseBuffer; // don't support Buffer yet in unity //#endif StructuredBuffer _DirectionalLightDatas; StructuredBuffer _LightDatas; StructuredBuffer _EnvLightDatas; StructuredBuffer _ShadowDatas; // Used by directional and spot lights TEXTURE2D_ARRAY(_CookieTextures); // Used by point lights TEXTURECUBE_ARRAY_ABSTRACT(_CookieCubeTextures); // Use texture array for reflection (or LatLong 2D array for mobile) TEXTURECUBE_ARRAY_ABSTRACT(_EnvTextures); TEXTURE2D(_DeferredShadowTexture); CBUFFER_START(UnityPerLightLoop) uint _DirectionalLightCount; uint _PunctualLightCount; uint _AreaLightCount; uint _EnvLightCount; float4 _DirShadowSplitSpheres[4]; // TODO: share this max between C# and hlsl int _EnvLightSkyEnabled; // TODO: make it a bool CBUFFER_END // LightLoopContext is not visible from Material (user should not use these properties in Material file) // It allow the lightloop to have transmit sampling information (do we use atlas, or texture array etc...) struct LightLoopContext { int sampleReflection; ShadowContext shadowContext; }; //----------------------------------------------------------------------------- // Cookie sampling functions // ---------------------------------------------------------------------------- // Used by directional and spot lights. float3 SampleCookie2D(LightLoopContext lightLoopContext, float2 coord, int index) { // TODO: add MIP maps to combat aliasing? return SAMPLE_TEXTURE2D_ARRAY_LOD(_CookieTextures, s_linear_clamp_sampler, coord, index, 0).rgb; } // Used by point lights. float3 SampleCookieCube(LightLoopContext lightLoopContext, float3 coord, int index) { // TODO: add MIP maps to combat aliasing? return SAMPLE_TEXTURECUBE_ARRAY_LOD_ABSTRACT(_CookieCubeTextures, s_linear_clamp_sampler, coord, index, 0).rgb; } //----------------------------------------------------------------------------- // Reflection probe / Sky sampling function // ---------------------------------------------------------------------------- #define SINGLE_PASS_CONTEXT_SAMPLE_REFLECTION_PROBES 0 #define SINGLE_PASS_CONTEXT_SAMPLE_SKY 1 // Note: index is whatever the lighting architecture want, it can contain information like in which texture to sample (in case we have a compressed BC6H texture and an uncompressed for real time reflection ?) // EnvIndex can also be use to fetch in another array of struct (to atlas information etc...). float4 SampleEnv(LightLoopContext lightLoopContext, int index, float3 texCoord, float lod) { // This code will be inlined as lightLoopContext is hardcoded in the light loop if (lightLoopContext.sampleReflection == SINGLE_PASS_CONTEXT_SAMPLE_REFLECTION_PROBES) { return SAMPLE_TEXTURECUBE_ARRAY_LOD_ABSTRACT(_EnvTextures, s_trilinear_clamp_sampler, texCoord, index, lod); } else // SINGLE_PASS_SAMPLE_SKY { return SampleSkyTexture(texCoord, lod); } } //----------------------------------------------------------------------------- // Single Pass and Tile Pass // ---------------------------------------------------------------------------- #ifdef LIGHTLOOP_TILE_PASS // Calculate the offset in global light index light for current light category int GetTileOffset(PositionInputs posInput, uint lightCategory) { uint2 tileIndex = posInput.tileCoord; return (tileIndex.y + lightCategory * _NumTileFtplY) * _NumTileFtplX + tileIndex.x; } void GetCountAndStartTile(PositionInputs posInput, uint lightCategory, out uint start, out uint lightCount) { const int tileOffset = GetTileOffset(posInput, lightCategory); // The first entry inside a tile is the number of light for lightCategory (thus the +0) lightCount = g_vLightListGlobal[DWORD_PER_TILE * tileOffset + 0] & 0xffff; start = tileOffset; } #ifdef USE_FPTL_LIGHTLIST uint GetTileSize() { return TILE_SIZE_FPTL; } void GetCountAndStart(PositionInputs posInput, uint lightCategory, out uint start, out uint lightCount) { GetCountAndStartTile(posInput, lightCategory, start, lightCount); } uint FetchIndex(uint tileOffset, uint lightIndex) { const uint lightIndexPlusOne = lightIndex + 1; // Add +1 as first slot is reserved to store number of light // Light index are store on 16bit return (g_vLightListGlobal[DWORD_PER_TILE * tileOffset + (lightIndexPlusOne >> 1)] >> ((lightIndexPlusOne & 1) * DWORD_PER_TILE)) & 0xffff; } #elif defined(USE_CLUSTERED_LIGHTLIST) #include "ClusteredUtils.hlsl" uint GetTileSize() { return TILE_SIZE_CLUSTERED; } float GetLightClusterMinLinearDepth(uint2 tileIndex, uint clusterIndex) { float logBase = g_fClustBase; if (g_isLogBaseBufferEnabled) { logBase = g_logBaseBuffer[tileIndex.y * _NumTileClusteredX + tileIndex.x]; } return ClusterIdxToZFlex(clusterIndex, logBase, g_isLogBaseBufferEnabled != 0); } uint GetLightClusterIndex(uint2 tileIndex, float linearDepth) { float logBase = g_fClustBase; if (g_isLogBaseBufferEnabled) { logBase = g_logBaseBuffer[tileIndex.y * _NumTileClusteredX + tileIndex.x]; } return SnapToClusterIdxFlex(linearDepth, logBase, g_isLogBaseBufferEnabled != 0); } void GetCountAndStartCluster(uint2 tileIndex, uint clusterIndex, uint lightCategory, out uint start, out uint lightCount) { int nrClusters = (1 << g_iLog2NumClusters); const int idx = ((lightCategory * nrClusters + clusterIndex) * _NumTileClusteredY + tileIndex.y) * _NumTileClusteredX + tileIndex.x; uint dataPair = g_vLayeredOffsetsBuffer[idx]; start = dataPair & 0x7ffffff; lightCount = (dataPair >> 27) & 31; } void GetCountAndStartCluster(PositionInputs posInput, uint lightCategory, out uint start, out uint lightCount) { uint2 tileIndex = posInput.tileCoord; uint clusterIndex = GetLightClusterIndex(tileIndex, posInput.linearDepth); GetCountAndStartCluster(tileIndex, clusterIndex, lightCategory, start, lightCount); } void GetCountAndStart(PositionInputs posInput, uint lightCategory, out uint start, out uint lightCount) { GetCountAndStartCluster(posInput, lightCategory, start, lightCount); } uint FetchIndex(uint tileOffset, uint lightIndex) { return g_vLightListGlobal[tileOffset + lightIndex]; } #endif // USE_FPTL_LIGHTLIST #else uint GetTileSize() { return 1; } #endif // LIGHTLOOP_TILE_PASS LightData FetchLight(uint start, uint i) { #ifdef LIGHTLOOP_TILE_PASS int j = FetchIndex(start, i); #else int j = start + i; #endif return _LightDatas[j]; }