#ifndef LIGHTWEIGHT_LIGHTING_INCLUDED #define LIGHTWEIGHT_LIGHTING_INCLUDED #include "CoreRP/ShaderLibrary/Common.hlsl" #include "CoreRP/ShaderLibrary/EntityLighting.hlsl" #include "CoreRP/ShaderLibrary/ImageBasedLighting.hlsl" #include "Core.hlsl" #include "Shadows.hlsl" #ifdef NO_ADDITIONAL_LIGHTS #undef _ADDITIONAL_LIGHTS #endif // If lightmap is not defined than we evaluate GI (ambient + probes) from SH // We might do it fully or partially in vertex to save shader ALU #if !defined(LIGHTMAP_ON) #ifdef SHADER_API_GLES // Evaluates SH fully in vertex #define EVALUATE_SH_VERTEX #else // Evaluates L2 SH in vertex and L0L1 in pixel #define EVALUATE_SH_MIXED #endif #endif #ifdef LIGHTMAP_ON #define OUTPUT_LIGHTMAP_UV(lightmapUV, lightmapScaleOffset, OUT) OUT.xy = lightmapUV.xy * lightmapScaleOffset.xy + lightmapScaleOffset.zw; #define OUTPUT_SH(normalWS, OUT) #else #define OUTPUT_LIGHTMAP_UV(lightmapUV, lightmapScaleOffset, OUT) #define OUTPUT_SH(normalWS, OUT) OUT.xyz = SampleSHVertex(normalWS) #endif /////////////////////////////////////////////////////////////////////////////// // Light Helpers // /////////////////////////////////////////////////////////////////////////////// struct LightInput { float4 position; half3 color; half4 distanceAttenuation; half4 spotDirection; half4 spotAttenuation; }; LightInput GetMainLight() { LightInput light; light.position = _MainLightPosition; light.color = _MainLightColor.rgb; light.distanceAttenuation = _MainLightDistanceAttenuation; light.spotDirection = _MainLightSpotDir; light.spotAttenuation = _MainLightSpotAttenuation; return light; } LightInput GetLight(int i) { LightInput light; half4 indices = (i < 4) ? unity_4LightIndices0 : unity_4LightIndices1; int index = (i < 4) ? i : i - 4; int lightIndex = indices[index]; light.position = _AdditionalLightPosition[lightIndex]; light.color = _AdditionalLightColor[lightIndex].rgb; light.distanceAttenuation = _AdditionalLightDistanceAttenuation[lightIndex]; light.spotDirection = _AdditionalLightSpotDir[lightIndex]; light.spotAttenuation = _AdditionalLightSpotAttenuation[lightIndex]; return light; } half GetPixelLightCount() { return min(_AdditionalLightCount.x, unity_LightIndicesOffsetAndCount.y); } /////////////////////////////////////////////////////////////////////////////// // Global Illumination // /////////////////////////////////////////////////////////////////////////////// // Samples SH L0, L1 and L2 terms half3 SampleSH(half3 normalWS) { // LPPV is not supported in Ligthweight Pipeline float4 SHCoefficients[7]; SHCoefficients[0] = unity_SHAr; SHCoefficients[1] = unity_SHAg; SHCoefficients[2] = unity_SHAb; SHCoefficients[3] = unity_SHBr; SHCoefficients[4] = unity_SHBg; SHCoefficients[5] = unity_SHBb; SHCoefficients[6] = unity_SHC; return SampleSH9(SHCoefficients, normalWS); } // SH Vertex Evaluation. Depending on target SH sampling might be // done completely per vertex or mixed with L2 term per vertex and L0, L1 // per pixel. See SampleSHPixel half3 SampleSHVertex(half3 normalWS) { #if defined(EVALUATE_SH_VERTEX) return max(half3(0, 0, 0), SampleSH(normalWS)); #elif defined(EVALUATE_SH_MIXED) // no max since this is only L2 contribution return SHEvalLinearL2(normalWS, unity_SHBr, unity_SHBg, unity_SHBb, unity_SHC); #endif // Fully per-pixel. Nothing to compute. return half3(0.0, 0.0, 0.0); } // SH Pixel Evaluation. Depending on target SH sampling might be done // mixed or fully in pixel. See SampleSHVertex half3 SampleSHPixel(half3 L2Term, half3 normalWS) { #ifdef EVALUATE_SH_MIXED half3 L0L1Term = SHEvalLinearL0L1(normalWS, unity_SHAr, unity_SHAg, unity_SHAb); return max(half3(0, 0, 0), L2Term + L0L1Term); #endif // Default: Evaluate SH fully per-pixel return max(half3(0, 0, 0), SampleSH(normalWS)); } // Sample baked lightmap. Non-Direction and Directional if available. // Realtime GI is not supported. half3 SampleLightmap(float2 lightmapUV, half3 normalWS) { #ifdef UNITY_LIGHTMAP_FULL_HDR bool encodedLightmap = false; #else bool encodedLightmap = true; #endif // The shader library sample lightmap functions transform the lightmap uv coords to apply bias and scale. // However, lightweight pipeline already transformed those coords in vertex. We pass half4(1, 1, 0, 0) and // the compiler will optimize the transform away. half4 transformCoords = half4(1, 1, 0, 0); #ifdef DIRLIGHTMAP_COMBINED return SampleDirectionalLightmap(TEXTURE2D_PARAM(unity_Lightmap, samplerunity_Lightmap), TEXTURE2D_PARAM(unity_LightmapInd, samplerunity_Lightmap), lightmapUV, transformCoords, normalWS, encodedLightmap); #else return SampleSingleLightmap(TEXTURE2D_PARAM(unity_Lightmap, samplerunity_Lightmap), lightmapUV, transformCoords, encodedLightmap); #endif } // We either sample GI from baked lightmap or from probes. // If lightmap: sampleData.xy = lightmapUV // If probe: sampleData.xyz = L2 SH terms half3 SampleGI(float4 sampleData, half3 normalWS) { #ifdef LIGHTMAP_ON return SampleLightmap(sampleData.xy, normalWS); #endif // If lightmap is not enabled we sample GI from SH return SampleSHPixel(sampleData.xyz, normalWS); } half3 DiffuseGI(half3 indirectDiffuse, half3 lambert, half mainLightRealtimeAttenuation, half occlusion) { // If shadows and mixed subtractive mode is enabled we need to remove direct // light contribution from lightmap from occluded pixels so we can have dynamic objects // casting shadows onto static correctly. #if defined(_MIXED_LIGHTING_SUBTRACTIVE) && defined(LIGHTMAP_ON) && defined(_SHADOWS) indirectDiffuse = SubtractDirectMainLightFromLightmap(indirectDiffuse, mainLightRealtimeAttenuation, lambert); #endif return indirectDiffuse * occlusion; } half3 GlossyEnvironmentReflection(half3 viewDirectionWS, half3 normalWS, half perceptualRoughness, half occlusion) { half3 reflectVector = reflect(-viewDirectionWS, normalWS); #if !defined(_GLOSSYREFLECTIONS_OFF) half mip = PerceptualRoughnessToMipmapLevel(perceptualRoughness); half4 encodedIrradiance = SAMPLE_TEXTURECUBE_LOD(unity_SpecCube0, samplerunity_SpecCube0, reflectVector, mip); #if !defined(UNITY_USE_NATIVE_HDR) half3 irradiance = DecodeHDREnvironment(encodedIrradiance, unity_SpecCube0_HDR); #else half3 irradiance = encodedIrradiance.rbg; #endif return irradiance * occlusion; #endif // GLOSSY_REFLECTIONS return _GlossyEnvironmentColor.rgb * occlusion; } /////////////////////////////////////////////////////////////////////////////// // BRDF Functions // /////////////////////////////////////////////////////////////////////////////// #define kDieletricSpec half4(0.04, 0.04, 0.04, 1.0 - 0.04) // standard dielectric reflectivity coef at incident angle (= 4%) struct BRDFData { half3 diffuse; half3 specular; half perceptualRoughness; half roughness; half grazingTerm; }; half ReflectivitySpecular(half3 specular) { #if (SHADER_TARGET < 30) // SM2.0: instruction count limitation return specular.r; // Red channel - because most metals are either monocrhome or with redish/yellowish tint #else return max(max(specular.r, specular.g), specular.b); #endif } half OneMinusReflectivityMetallic(half metallic) { // We'll need oneMinusReflectivity, so // 1-reflectivity = 1-lerp(dielectricSpec, 1, metallic) = lerp(1-dielectricSpec, 0, metallic) // store (1-dielectricSpec) in kDieletricSpec.a, then // 1-reflectivity = lerp(alpha, 0, metallic) = alpha + metallic*(0 - alpha) = // = alpha - metallic * alpha half oneMinusDielectricSpec = kDieletricSpec.a; return oneMinusDielectricSpec - metallic * oneMinusDielectricSpec; } inline void InitializeBRDFData(half3 albedo, half metallic, half3 specular, half smoothness, half alpha, out BRDFData outBRDFData) { #ifdef _SPECULAR_SETUP half reflectivity = ReflectivitySpecular(specular); half oneMinusReflectivity = 1.0 - reflectivity; outBRDFData.diffuse = albedo * (half3(1.0h, 1.0h, 1.0h) - specular); outBRDFData.specular = specular; #else half oneMinusReflectivity = OneMinusReflectivityMetallic(metallic); half reflectivity = 1.0 - oneMinusReflectivity; outBRDFData.diffuse = albedo * oneMinusReflectivity; outBRDFData.specular = lerp(kDieletricSpec.rgb, albedo, metallic); #endif outBRDFData.grazingTerm = saturate(smoothness + reflectivity); outBRDFData.perceptualRoughness = 1.0h - smoothness; outBRDFData.roughness = outBRDFData.perceptualRoughness * outBRDFData.perceptualRoughness; #ifdef _ALPHAPREMULTIPLY_ON outBRDFData.diffuse *= alpha; alpha = alpha * oneMinusReflectivity + reflectivity; #endif } half3 EnvironmentBRDF(BRDFData brdfData, half3 indirectDiffuse, half3 indirectSpecular, half roughness2, half fresnelTerm) { half3 c = indirectDiffuse * brdfData.diffuse; float surfaceReduction = 1.0 / (roughness2 + 1.0); c += surfaceReduction * indirectSpecular * lerp(brdfData.specular, brdfData.grazingTerm, fresnelTerm); return c; } // Based on Minimalist CookTorrance BRDF // Implementation is slightly different from original derivation: http://www.thetenthplanet.de/archives/255 // // * NDF [Modified] GGX // * Modified Kelemen and Szirmay-​Kalos for Visibility term // * Fresnel approximated with 1/LdotH half3 DirectBDRF(BRDFData brdfData, half roughness2, half3 normal, half3 lightDirection, half3 viewDir) { #ifndef _SPECULARHIGHLIGHTS_OFF half3 halfDir = SafeNormalize(lightDirection + viewDir); half NoH = saturate(dot(normal, halfDir)); half LoH = saturate(dot(lightDirection, halfDir)); // GGX Distribution multiplied by combined approximation of Visibility and Fresnel // See "Optimizing PBR for Mobile" from Siggraph 2015 moving mobile graphics course // https://community.arm.com/events/1155 half d = NoH * NoH * (roughness2 - 1.h) + 1.00001h; half LoH2 = LoH * LoH; half specularTerm = roughness2 / ((d * d) * max(0.1h, LoH2) * (brdfData.roughness + 0.5h) * 4); // on mobiles (where half actually means something) denominator have risk of overflow // clamp below was added specifically to "fix" that, but dx compiler (we convert bytecode to metal/gles) // sees that specularTerm have only non-negative terms, so it skips max(0,..) in clamp (leaving only min(100,...)) #if defined (SHADER_API_MOBILE) specularTerm = specularTerm - 1e-4h; #endif #if defined (SHADER_API_MOBILE) specularTerm = clamp(specularTerm, 0.0, 100.0); // Prevent FP16 overflow on mobiles #endif half3 color = specularTerm * brdfData.specular + brdfData.diffuse; return color; #else return brdfData.diffuse; #endif } /////////////////////////////////////////////////////////////////////////////// // Attenuation Functions / /////////////////////////////////////////////////////////////////////////////// half CookieAttenuation(float3 worldPos) { #ifdef _MAIN_LIGHT_COOKIE #ifdef _MAIN_DIRECTIONAL_LIGHT float2 cookieUV = mul(_WorldToLight, float4(worldPos, 1.0)).xy; return SAMPLE_TEXTURE2D(_MainLightCookie, sampler_MainLightCookie, cookieUV).a; #elif defined(_MAIN_SPOT_LIGHT) float4 projPos = mul(_WorldToLight, float4(worldPos, 1.0)); float2 cookieUV = projPos.xy / projPos.w + 0.5; return SAMPLE_TEXTURE2D(_MainLightCookie, sampler_MainLightCookie, cookieUV).a; #endif // POINT LIGHT cookie not supported #endif return 1; } // Matches Unity Vanila attenuation // Attenuation smoothly decreases to light range. half DistanceAttenuation(half distanceSqr, half4 distanceAttenuation) { // We use a shared distance attenuation for additional directional and puctual lights // for directional lights attenuation will be 1 half quadFalloff = distanceAttenuation.x; half denom = distanceSqr * quadFalloff + 1.0; half lightAtten = 1.0 / denom; // We need to smoothly fade attenuation to light range. We start fading linearly at 80% of light range // Therefore: // fadeDistance = (0.8 * 0.8 * lightRangeSq) // smoothFactor = (lightRangeSqr - distanceSqr) / (lightRangeSqr - fadeDistance) // We can rewrite that to fit a MAD by doing // distanceSqr * (1.0 / (fadeDistanceSqr - lightRangeSqr)) + (-lightRangeSqr / (fadeDistanceSqr - lightRangeSqr) // distanceSqr * distanceAttenuation.y + distanceAttenuation.z half smoothFactor = saturate(distanceSqr * distanceAttenuation.y + distanceAttenuation.z); return lightAtten * smoothFactor; } half SpotAttenuation(half3 spotDirection, half3 lightDirection, half4 spotAttenuation) { // Spot Attenuation with a linear falloff can be defined as // (SdotL - cosOuterAngle) / (cosInnerAngle - cosOuterAngle) // This can be rewritten as // invAngleRange = 1.0 / (cosInnerAngle - cosOuterAngle) // SdotL * invAngleRange + (-cosOuterAngle * invAngleRange) // SdotL * spotAttenuation.x + spotAttenuation.y // If we precompute the terms in a MAD instruction half SdotL = dot(spotDirection, lightDirection); return saturate(SdotL * spotAttenuation.x + spotAttenuation.y); } inline half GetLightDirectionAndRealtimeAttenuation(LightInput lightInput, half3 normal, float3 worldPos, out half3 lightDirection) { float3 posToLightVec = lightInput.position.xyz - worldPos * lightInput.position.w; float distanceSqr = max(dot(posToLightVec, posToLightVec), 0.001); // normalized light dir lightDirection = half3(posToLightVec * rsqrt(distanceSqr)); half lightAtten = DistanceAttenuation(distanceSqr, lightInput.distanceAttenuation); lightAtten *= SpotAttenuation(lightInput.spotDirection.xyz, lightDirection, lightInput.spotAttenuation); return lightAtten; } inline half GetMainLightDirectionAndRealtimeAttenuation(LightInput lightInput, half3 normalWS, float3 positionWS, out half3 lightDirection) { #ifdef _MAIN_DIRECTIONAL_LIGHT // Light pos holds normalized light dir lightDirection = lightInput.position.xyz; half attenuation = 1.0; #else half attenuation = GetLightDirectionAndRealtimeAttenuation(lightInput, normalWS, positionWS, lightDirection); #endif // Cookies and shadows are only computed for main light attenuation *= CookieAttenuation(positionWS); attenuation *= LIGHTWEIGHT_SHADOW_ATTENUATION(positionWS, normalWS, lightDirection); return attenuation; } /////////////////////////////////////////////////////////////////////////////// // Lighting Functions // /////////////////////////////////////////////////////////////////////////////// half3 LightingLambert(half3 lightColor, half3 lightDir, half3 normal) { half NdotL = saturate(dot(normal, lightDir)); return lightColor * NdotL; } half3 LightingSpecular(half3 lightColor, half3 lightDir, half3 normal, half3 viewDir, half4 specularGloss, half shininess) { half3 halfVec = SafeNormalize(lightDir + viewDir); half NdotH = saturate(dot(normal, halfVec)); half3 specularReflection = specularGloss.rgb * pow(NdotH, shininess) * specularGloss.a; return lightColor * specularReflection; } half3 VertexLighting(float3 positionWS, half3 normalWS) { half3 vertexLightColor = half3(0.0, 0.0, 0.0); #if defined(_VERTEX_LIGHTS) int vertexLightStart = _AdditionalLightCount.x; int vertexLightEnd = min(_AdditionalLightCount.y, unity_LightIndicesOffsetAndCount.y); for (int lightIter = vertexLightStart; lightIter < vertexLightEnd; ++lightIter) { LightInput light = GetLight(lightIter); half3 lightDirection; half atten = GetLightDirectionAndRealtimeAttenuation(light, normalWS, positionWS, lightDirection); half3 lightColor = light.color * atten; vertexLightColor += LightingLambert(lightColor, lightDirection, normalWS); } #endif return vertexLightColor; } /////////////////////////////////////////////////////////////////////////////// // Fragment Functions // // Used by ShaderGraph and others builtin renderers // /////////////////////////////////////////////////////////////////////////////// half4 LightweightFragmentPBR(float3 positionWS, half3 normalWS, half3 viewDirectionWS, half3 bakedGI, half3 vertexLighting, half3 albedo, half metallic, half3 specular, half smoothness, half occlusion, half3 emission, half alpha) { half4 bakedOcclusion = half4(0, 0, 0, 0); BRDFData brdfData; InitializeBRDFData(albedo, metallic, specular, smoothness, alpha, brdfData); half3 lightDirectionWS; LightInput mainLight = GetMainLight(); // No distance fade. half realtimeMainLightAtten = GetMainLightDirectionAndRealtimeAttenuation(mainLight, normalWS, positionWS, lightDirectionWS); half NdotL = saturate(dot(normalWS, lightDirectionWS)); half3 radiance = mainLight.color * NdotL; half3 indirectDiffuse = DiffuseGI(bakedGI, radiance, realtimeMainLightAtten, occlusion); half3 indirectSpecular = GlossyEnvironmentReflection(viewDirectionWS, normalWS, brdfData.perceptualRoughness, occlusion); half roughness2 = brdfData.roughness * brdfData.roughness; half fresnelTerm = Pow4(1.0 - saturate(dot(normalWS, viewDirectionWS))); half3 color = EnvironmentBRDF(brdfData, indirectDiffuse, indirectSpecular, roughness2, fresnelTerm); half mainLightAtten = MixRealtimeAndBakedOcclusion(realtimeMainLightAtten, bakedOcclusion, mainLight.distanceAttenuation); radiance *= mainLightAtten; color += DirectBDRF(brdfData, roughness2, normalWS, lightDirectionWS, viewDirectionWS) * radiance; color += vertexLighting * brdfData.diffuse; #ifdef _ADDITIONAL_LIGHTS int pixelLightCount = GetPixelLightCount(); for (int lightIter = 0; lightIter < pixelLightCount; ++lightIter) { LightInput light = GetLight(lightIter); half lightAttenuation = GetLightDirectionAndRealtimeAttenuation(light, normalWS, positionWS, lightDirectionWS); lightAttenuation = MixRealtimeAndBakedOcclusion(lightAttenuation, bakedOcclusion, light.distanceAttenuation); half NdotL = saturate(dot(normalWS, lightDirectionWS)); half3 radiance = light.color * (lightAttenuation * NdotL); color += DirectBDRF(brdfData, roughness2, normalWS, lightDirectionWS, viewDirectionWS) * radiance; } #endif color += emission; return half4(color, alpha); } half4 LightweightFragmentLambert(float3 positionWS, half3 normalWS, half3 viewDirectionWS, half fogFactor, half3 diffuseGI, half3 diffuse, half3 emission, half alpha) { half4 bakedOcclusion = half4(0, 0, 0, 0); half3 lightDirection; LightInput mainLight = GetMainLight(); half realtimeMainLightAtten = GetMainLightDirectionAndRealtimeAttenuation(mainLight, normalWS, positionWS, lightDirection); half3 NdotL = saturate(dot(normalWS, lightDirection)); half3 lambert = mainLight.color * NdotL; half3 indirectDiffuse = DiffuseGI(diffuseGI, lambert, realtimeMainLightAtten, 1.0); half mainLightAtten = MixRealtimeAndBakedOcclusion(realtimeMainLightAtten, bakedOcclusion, mainLight.distanceAttenuation); half3 diffuseColor = lambert * mainLightAtten + indirectDiffuse; #ifdef _ADDITIONAL_LIGHTS int pixelLightCount = GetPixelLightCount(); for (int lightIter = 0; lightIter < pixelLightCount; ++lightIter) { LightInput light = GetLight(lightIter); half lightAttenuation = GetLightDirectionAndRealtimeAttenuation(light, normalWS, positionWS, lightDirection); lightAttenuation = MixRealtimeAndBakedOcclusion(lightAttenuation, bakedOcclusion, light.distanceAttenuation); half3 attenuatedLightColor = light.color * lightAttenuation; diffuseColor += LightingLambert(attenuatedLightColor, lightDirection, normalWS); } #endif half3 finalColor = diffuseColor * diffuse + emission; // Computes Fog Factor per vextex ApplyFog(finalColor, fogFactor); return half4(finalColor, alpha); } half4 LightweightFragmentBlinnPhong(float3 positionWS, half3 normalWS, half3 viewDirectionWS, half fogFactor, half3 diffuseGI, half3 diffuse, half4 specularGloss, half shininess, half3 emission, half alpha) { half4 bakedOcclusion = half4(0, 0, 0, 0); half3 lightDirection; LightInput mainLight = GetMainLight(); half realtimeMainLightAtten = GetMainLightDirectionAndRealtimeAttenuation(mainLight, normalWS, positionWS, lightDirection); half3 NdotL = saturate(dot(normalWS, lightDirection)); half3 lambert = mainLight.color * NdotL; half3 indirectDiffuse = DiffuseGI(diffuseGI, lambert, realtimeMainLightAtten, 1.0); half mainLightAtten = MixRealtimeAndBakedOcclusion(realtimeMainLightAtten, bakedOcclusion, mainLight.distanceAttenuation); half3 diffuseColor = lambert * mainLightAtten + indirectDiffuse; half3 specularColor = LightingSpecular(mainLight.color * mainLightAtten, lightDirection, normalWS, viewDirectionWS, specularGloss, shininess); #ifdef _ADDITIONAL_LIGHTS int pixelLightCount = GetPixelLightCount(); for (int lightIter = 0; lightIter < pixelLightCount; ++lightIter) { LightInput light = GetLight(lightIter); half lightAttenuation = GetLightDirectionAndRealtimeAttenuation(light, normalWS, positionWS, lightDirection); lightAttenuation = MixRealtimeAndBakedOcclusion(lightAttenuation, bakedOcclusion, light.distanceAttenuation); half3 attenuatedLightColor = light.color * lightAttenuation; diffuseColor += LightingLambert(attenuatedLightColor, lightDirection, normalWS); specularColor += LightingSpecular(attenuatedLightColor, lightDirection, normalWS, viewDirectionWS, specularGloss, shininess); } #endif half3 finalColor = diffuseColor * diffuse + emission; finalColor += specularColor; // Computes Fog Factor per vextex ApplyFog(finalColor, fogFactor); return half4(finalColor, alpha); } #endif