#ifndef UNITY_GEOMETRICTOOLS_INCLUDED #define UNITY_GEOMETRICTOOLS_INCLUDED //----------------------------------------------------------------------------- // Intersection functions //----------------------------------------------------------------------------- // return furthest near intersection in x and closest far intersection in y // if (intersections.y > intersections.x) the ray hit the box, else it miss it // Assume dir is normalize float2 BoxRayIntersect(float3 start, float3 dir, float3 boxMin, float3 boxMax) { float3 invDir = 1.0 / dir; // Find the ray intersection with box plane float3 firstPlaneIntersect = (boxMin - start) * invDir; float3 secondPlaneIntersect = (boxMax - start) * invDir; // Get the closest/furthest of these intersections along the ray (Ok because x/0 give +inf and -x/0 give �inf ) float3 closestPlane = min(firstPlaneIntersect, secondPlaneIntersect); float3 furthestPlane = max(firstPlaneIntersect, secondPlaneIntersect); float2 intersections; // Find the furthest near intersection intersections.x = max(closestPlane.x, max(closestPlane.y, closestPlane.z)); // Find the closest far intersection intersections.y = min(min(furthestPlane.x, furthestPlane.y), furthestPlane.z); return intersections; } // This simplified version assume that we care about the result only when we are inside the box // Assume dir is normalize float BoxRayIntersectSimple(float3 start, float3 dir, float3 boxMin, float3 boxMax) { float3 invDir = 1.0 / dir; // Find the ray intersection with box plane float3 rbmin = (boxMin - start) * invDir; float3 rbmax = (boxMax - start) * invDir; float3 rbminmax = (dir > 0.0) ? rbmax : rbmin; return min(min(rbminmax.x, rbminmax.y), rbminmax.z); } // Assume Sphere is at the origin (i.e start = position - spherePosition) float2 SphereRayIntersect(float3 start, float3 dir, float radius, out bool intersect) { float a = dot(dir, dir); float b = dot(dir, start) * 2.0; float c = dot(start, start) - radius * radius; float discriminant = b * b - 4.0 * a * c; float2 intersections = float2(0.0, 0.0); intersect = false; if (discriminant < 0.0 || a == 0.0) { intersections.x = 0.0; intersections.y = 0.0; } else { float sqrtDiscriminant = sqrt(discriminant); intersections.x = (-b - sqrtDiscriminant) / (2.0 * a); intersections.y = (-b + sqrtDiscriminant) / (2.0 * a); intersect = true; } return intersections; } // This simplified version assume that we care about the result only when we are inside the sphere // Assume Sphere is at the origin (i.e start = position - spherePosition) and dir is normalized // Ref: http://http.developer.nvidia.com/GPUGems/gpugems_ch19.html float SphereRayIntersectSimple(float3 start, float3 dir, float radius) { float b = dot(dir, start) * 2.0; float c = dot(start, start) - radius * radius; float discriminant = b * b - 4.0 * c; return abs(sqrt(discriminant) - b) * 0.5; } float3 RayPlaneIntersect(in float3 rayOrigin, in float3 rayDirection, in float3 planeOrigin, in float3 planeNormal) { float dist = dot(planeNormal, planeOrigin - rayOrigin) / dot(planeNormal, rayDirection); return rayOrigin + rayDirection * dist; } // Solves the quadratic equation of the form: a*t^2 + b*t + c = 0. // Returns 'false' if there are no real roots, 'true' otherwise. // Ref: Numerical Recipes in C++ (3rd Edition) bool SolveQuadraticEquation(float a, float b, float c, out float2 roots) { float d = b * b - 4 * a * c; float q = -0.5 * (b + FastSign(b) * sqrt(d)); roots = float2(q / a, c / q); return (d >= 0); } // Can support cones with an elliptic base: pre-scale 'coneAxisX' and 'coneAxisY' by (h/r_x) and (h/r_y). // Returns parametric distances 'tEntr' and 'tExit' along the ray, // subject to constraints 'tMin' and 'tMax'. bool IntersectRayCone(float3 rayOrigin, float3 rayDirection, float3 coneOrigin, float3 coneDirection, float3 coneAxisX, float3 coneAxisY, float tMin, float tMax, out float tEntr, out float tExit) { // Inverse transform the ray into a coordinate system with the cone at the origin facing along the Z axis. float3x3 rotMat = float3x3(coneAxisX, coneAxisY, coneDirection); float3 o = mul(rotMat, rayOrigin - coneOrigin); float3 d = mul(rotMat, rayDirection); // Cone equation (facing along Z): (h/r*x)^2 + (h/r*y)^2 - z^2 = 0. // Cone axes are premultiplied with (h/r). // Set up the quadratic equation: a*t^2 + b*t + c = 0. float a = d.x * d.x + d.y * d.y - d.z * d.z; float b = o.x * d.x + o.y * d.y - o.z * d.z; float c = o.x * o.x + o.y * o.y - o.z * o.z; float2 roots; // Check whether we have at least 1 root. bool hit = SolveQuadraticEquation(a, 2 * b, c, roots); tEntr = min(roots.x, roots.y); tExit = max(roots.x, roots.y); float3 pEntr = o + tEntr * d; float3 pExit = o + tExit * d; // Clip the negative cone. bool pEntrNeg = pEntr.z < 0; bool pExitNeg = pExit.z < 0; if (pEntrNeg && pExitNeg) { hit = false; } if (pEntrNeg) { tEntr = tExit; tExit = tMax; } if (pExitNeg) { tExit = tEntr; tEntr = tMin; } // Clamp using the values passed into the function. tEntr = clamp(tEntr, tMin, tMax); tExit = clamp(tExit, tMin, tMax); // Check for grazing intersections. if (tEntr == tExit) { hit = false; } return hit; } // This implementation does not attempt to explicitly handle NaNs. // Ref: https://tavianator.com/fast-branchless-raybounding-box-intersections-part-2-nans/ bool IntersectRayAABB(float3 rayOrigin, float3 rayDirection, float3 boxPt0, float3 boxPt1, float tMin, float tMax, out float tEntr, out float tExit) { float3 rayDirInv = rcp(rayDirection); // Could be precomputed tEntr = tMin; tExit = tMax; for (int i = 0; i < 3; ++i) { float t0 = boxPt0[i] * rayDirInv[i] - (rayOrigin[i] * rayDirInv[i]); float t1 = boxPt1[i] * rayDirInv[i] - (rayOrigin[i] * rayDirInv[i]); tEntr = max(tEntr, min(t0, t1)); // Farthest entry tExit = min(tExit, max(t0, t1)); // Nearest exit } return tEntr < tExit; } //----------------------------------------------------------------------------- // Miscellaneous functions //----------------------------------------------------------------------------- // Box is AABB float DistancePointBox(float3 position, float3 boxMin, float3 boxMax) { return length(max(max(position - boxMax, boxMin - position), float3(0.0, 0.0, 0.0))); } float3 ProjectPointOnPlane(float3 position, float3 planePosition, float3 planeNormal) { return position - (dot(position - planePosition, planeNormal) * planeNormal); } // Plane equation: {(a, b, c) = N, d = -dot(N, P)}. // Returns the distance from the plane to the point 'p' along the normal. // Positive -> in front (above), negative -> behind (below). float DistanceFromPlane(float3 p, float4 plane) { return dot(float4(p, 1.0), plane); } // Returns 'true' if the triangle is outside of the frustum. // 'epsilon' is the (negative) distance to (outside of) the frustum below which we cull the triangle. bool CullTriangleFrustum(float3 p0, float3 p1, float3 p2, float epsilon, float4 frustumPlanes[6], int numPlanes) { bool outside = false; for (int i = 0; i < numPlanes; i++) { // If all 3 points are behind any of the planes, we cull. outside = outside || Max3(DistanceFromPlane(p0, frustumPlanes[i]), DistanceFromPlane(p1, frustumPlanes[i]), DistanceFromPlane(p2, frustumPlanes[i])) < epsilon; } return outside; } // Returns 'true' if the edge of the triangle is outside of the frustum. // The edges are defined s.t. they are on the opposite side of the point with the given index. // 'epsilon' is the (negative) distance to (outside of) the frustum below which we cull the triangle. bool3 CullTriangleEdgesFrustum(float3 p0, float3 p1, float3 p2, float epsilon, float4 frustumPlanes[6], int numPlanes) { bool3 edgesOutside = false; for (int i = 0; i < numPlanes; i++) { bool3 pointsOutside = bool3(DistanceFromPlane(p0, frustumPlanes[i]) < epsilon, DistanceFromPlane(p1, frustumPlanes[i]) < epsilon, DistanceFromPlane(p2, frustumPlanes[i]) < epsilon); // If both points of the edge are behind any of the planes, we cull. edgesOutside.x = edgesOutside.x || (pointsOutside.y && pointsOutside.z); edgesOutside.y = edgesOutside.y || (pointsOutside.x && pointsOutside.z); edgesOutside.z = edgesOutside.z || (pointsOutside.x && pointsOutside.y); } return edgesOutside; } bool CullTriangleBackFaceView(float3 p0, float3 p1, float3 p2, float epsilon, float3 V, float winding) { float3 edge1 = p1 - p0; float3 edge2 = p2 - p0; float3 N = cross(edge1, edge2); float NdotV = dot(N, V) * winding; // Optimize: // NdotV / (length(N) * length(V)) < Epsilon // NdotV < Epsilon * length(N) * length(V) // NdotV < Epsilon * sqrt(dot(N, N)) * sqrt(dot(V, V)) // NdotV < Epsilon * sqrt(dot(N, N) * dot(V, V)) return NdotV < epsilon * sqrt(dot(N, N) * dot(V, V)); } // Returns 'true' if a triangle defined by 3 vertices is back-facing. // 'epsilon' is the (negative) value of dot(N, V) below which we cull the triangle. // 'winding' can be used to change the order: pass 1 for (p0 -> p1 -> p2), or -1 for (p0 -> p2 -> p1). bool CullTriangleBackFace(float3 p0, float3 p1, float3 p2, float epsilon, float3 viewPos, float winding) { float3 V = viewPos - p0; return CullTriangleBackFaceView(p0, p1, p2, epsilon, V, winding); } #endif // UNITY_GEOMETRICTOOLS_INCLUDED