#ifndef UNITY_MATERIAL_INCLUDED #define UNITY_MATERIAL_INCLUDED #include "CoreRP/ShaderLibrary/Color.hlsl" #include "CoreRP/ShaderLibrary/Packing.hlsl" #include "CoreRP/ShaderLibrary/BSDF.hlsl" #include "CoreRP/ShaderLibrary/Debug.hlsl" #include "CoreRP/ShaderLibrary/GeometricTools.hlsl" #include "CoreRP/ShaderLibrary/CommonMaterial.hlsl" #include "CoreRP/ShaderLibrary/EntityLighting.hlsl" #include "CoreRP/ShaderLibrary/ImageBasedLighting.hlsl" #include "HDRP/Lighting/AtmosphericScattering/AtmosphericScattering.hlsl" // Guidelines for Material Keyword. // There is a set of Material Keyword that a HD shaders must define (or not define). We call them system KeyWord. // .Shader need to define: // - _SURFACE_TYPE_TRANSPARENT if they use a transparent material // - _BLENDMODE_ALPHA, _BLENDMODE_ADD, _BLENDMODE_PRE_MULTIPLY for blend mode // - _BLENDMODE_PRESERVE_SPECULAR_LIGHTING for correct lighting when blend mode are use with a Lit material // - _ENABLE_FOG_ON_TRANSPARENT if fog is enable on transparent surface // - _DISABLE_DECALS if the material don't support decals #define HAVE_DECALS ( (defined(DECALS_3RT) || defined(DECALS_4RT)) && !defined(_DISABLE_DECALS) ) //----------------------------------------------------------------------------- // ApplyBlendMode function //----------------------------------------------------------------------------- float4 ApplyBlendMode(float3 diffuseLighting, float3 specularLighting, float opacity) { // ref: http://advances.realtimerendering.com/other/2016/naughty_dog/NaughtyDog_TechArt_Final.pdf // Lit transparent object should have reflection and tramission. // Transmission when not using "rough refraction mode" (with fetch in preblured background) is handled with blend mode. // However reflection should not be affected by blend mode. For example a glass should still display reflection and not lose the highlight when blend // This is the purpose of following function, "Cancel" the blend mode effect on the specular lighting but not on the diffuse lighting #ifdef _BLENDMODE_PRESERVE_SPECULAR_LIGHTING // In the case of _BLENDMODE_ALPHA the code should be float4(diffuseLighting + (specularLighting / max(opacity, 0.01)), opacity) // However this have precision issue when reaching 0, so we change the blend mode and apply src * src_a inside the shader instead #if defined(_BLENDMODE_ADD) || defined(_BLENDMODE_ALPHA) return float4(diffuseLighting * opacity + specularLighting, opacity); #else // defined(_BLENDMODE_PRE_MULTIPLY) return float4(diffuseLighting + specularLighting, opacity); #endif #else #if defined(_BLENDMODE_ADD) || defined(_BLENDMODE_ALPHA) return float4((diffuseLighting + specularLighting) * opacity, opacity); #else // defined(_BLENDMODE_PRE_MULTIPLY) return float4(diffuseLighting + specularLighting, opacity); #endif #endif } float4 ApplyBlendMode(float3 color, float opacity) { return ApplyBlendMode(color, float3(0.0, 0.0, 0.0), opacity); } //----------------------------------------------------------------------------- // Fog sampling function for materials //----------------------------------------------------------------------------- // Used for transparent object. input color is color + alpha of the original transparent pixel. // This must be call after ApplyBlendMode to work correctly float4 EvaluateAtmosphericScattering(PositionInputs posInput, float4 inputColor) { float4 result = inputColor; #ifdef _ENABLE_FOG_ON_TRANSPARENT float4 fog = EvaluateAtmosphericScattering(posInput); #if defined(_BLENDMODE_ALPHA) // Regular alpha blend need to multiply fog color by opacity (as we do src * src_a inside the shader) result.rgb = lerp(result.rgb, fog.rgb * result.a, fog.a); #elif defined(_BLENDMODE_ADD) // For additive, we just need to fade to black with fog density (black + background == background color == fog color) result.rgb = result.rgb * (1.0 - fog.a); #elif defined(_BLENDMODE_PRE_MULTIPLY) // For Pre-Multiplied Alpha Blend, we need to multiply fog color by src alpha to match regular alpha blending formula. result.rgb = lerp(result.rgb, fog.rgb * result.a, fog.a); #endif #else // Evaluation of fog for opaque objects is currently done in a full screen pass independent from any material parameters. // but this funtction is called in generic forward shader code so we need it to be neutral in this case. #endif return result; } //----------------------------------------------------------------------------- // Alpha test replacement //----------------------------------------------------------------------------- // This function must be use instead of clip instruction. It allow to manage in which case the clip is perform for optimization purpose void DoAlphaTest(float alpha, float alphaCutoff) { // For Deferred: // If we have a prepass, we may want to remove the clip from the GBuffer pass (otherwise HiZ does not work on PS4) - SHADERPASS_GBUFFER_BYPASS_ALPHA_TEST // For Forward Opaque: // If we have a prepass, we may want to remove the clip from the forward pass (otherwise HiZ does not work on PS4) - SHADERPASS_FORWARD_BYPASS_ALPHA_TEST // For Forward Transparent // Also no alpha test for light transport // Note: If SHADERPASS_GBUFFER_BYPASS_ALPHA_TEST or SHADERPASS_FORWARD_BYPASS_ALPHA_TEST are used, it mean that we must use ZTest depth equal for the pass (Need to use _ZTestDepthEqualForOpaque property). #if !defined(SHADERPASS_FORWARD_BYPASS_ALPHA_TEST) && !defined(SHADERPASS_GBUFFER_BYPASS_ALPHA_TEST) && !(SHADERPASS == SHADERPASS_LIGHT_TRANSPORT) clip(alpha - alphaCutoff); #endif } //----------------------------------------------------------------------------- // Reflection / Refraction hierarchy handling //----------------------------------------------------------------------------- // This function is use with reflection and refraction hierarchy of LightLoop // It will add weight to hierarchyWeight but ensure that hierarchyWeight is not more than one // by updating the weight value. Returned weight value must be apply on current lighting // Example: Total hierarchyWeight is 0.8 and weight is 0.4. Function return hierarchyWeight of 1.0 and weight of 0.2 // hierarchyWeight and weight must be positive and between 0 and 1 void UpdateLightingHierarchyWeights(inout float hierarchyWeight, inout float weight) { float accumulatedWeight = hierarchyWeight + weight; hierarchyWeight = saturate(accumulatedWeight); weight -= saturate(accumulatedWeight - hierarchyWeight); } //----------------------------------------------------------------------------- // BuiltinData //----------------------------------------------------------------------------- #include "Builtin/BuiltinData.hlsl" //----------------------------------------------------------------------------- // Material definition //----------------------------------------------------------------------------- // Here we include all the different lighting model supported by the renderloop based on define done in .shader // Only one deferred layout is allowed for a HDRenderPipeline, this will be detect by the redefinition of GBUFFERMATERIAL_COUNT // If GBUFFERMATERIAL_COUNT is define two time, the shaders will not compile #ifdef UNITY_MATERIAL_LIT #include "Lit/Lit.hlsl" #elif defined(UNITY_MATERIAL_UNLIT) #include "Unlit/Unlit.hlsl" #elif defined(UNITY_MATERIAL_STACKLIT) #include "StackLit/StackLit.hlsl" #elif defined(UNITY_MATERIAL_FABRIC) #include "Fabric/Fabric.hlsl" #endif //----------------------------------------------------------------------------- // Define for GBuffer management //----------------------------------------------------------------------------- #ifdef GBUFFERMATERIAL_COUNT #if GBUFFERMATERIAL_COUNT == 2 #define OUTPUT_GBUFFER(NAME) \ out GBufferType0 MERGE_NAME(NAME, 0) : SV_Target0, \ out GBufferType1 MERGE_NAME(NAME, 1) : SV_Target1 #define ENCODE_INTO_GBUFFER(SURFACE_DATA, BUILTIN_DATA, UNPOSITIONSS, NAME) EncodeIntoGBuffer(SURFACE_DATA, BUILTIN_DATA, UNPOSITIONSS, MERGE_NAME(NAME,0), MERGE_NAME(NAME,1)) #elif GBUFFERMATERIAL_COUNT == 3 #define OUTPUT_GBUFFER(NAME) \ out GBufferType0 MERGE_NAME(NAME, 0) : SV_Target0, \ out GBufferType1 MERGE_NAME(NAME, 1) : SV_Target1, \ out GBufferType2 MERGE_NAME(NAME, 2) : SV_Target2 #define ENCODE_INTO_GBUFFER(SURFACE_DATA, BUILTIN_DATA, UNPOSITIONSS, NAME) EncodeIntoGBuffer(SURFACE_DATA, BUILTIN_DATA, UNPOSITIONSS, MERGE_NAME(NAME,0), MERGE_NAME(NAME,1), MERGE_NAME(NAME,2)) #elif GBUFFERMATERIAL_COUNT == 4 #define OUTPUT_GBUFFER(NAME) \ out GBufferType0 MERGE_NAME(NAME, 0) : SV_Target0, \ out GBufferType1 MERGE_NAME(NAME, 1) : SV_Target1, \ out GBufferType2 MERGE_NAME(NAME, 2) : SV_Target2, \ out GBufferType3 MERGE_NAME(NAME, 3) : SV_Target3 #define ENCODE_INTO_GBUFFER(SURFACE_DATA, BUILTIN_DATA, UNPOSITIONSS, NAME) EncodeIntoGBuffer(SURFACE_DATA, BUILTIN_DATA, UNPOSITIONSS, MERGE_NAME(NAME, 0), MERGE_NAME(NAME, 1), MERGE_NAME(NAME, 2), MERGE_NAME(NAME, 3)) #elif GBUFFERMATERIAL_COUNT == 5 #define OUTPUT_GBUFFER(NAME) \ out GBufferType0 MERGE_NAME(NAME, 0) : SV_Target0, \ out GBufferType1 MERGE_NAME(NAME, 1) : SV_Target1, \ out GBufferType2 MERGE_NAME(NAME, 2) : SV_Target2, \ out GBufferType3 MERGE_NAME(NAME, 3) : SV_Target3, \ out GBufferType4 MERGE_NAME(NAME, 4) : SV_Target4 #define ENCODE_INTO_GBUFFER(SURFACE_DATA, BUILTIN_DATA, UNPOSITIONSS, NAME) EncodeIntoGBuffer(SURFACE_DATA, BUILTIN_DATA, UNPOSITIONSS, MERGE_NAME(NAME, 0), MERGE_NAME(NAME, 1), MERGE_NAME(NAME, 2), MERGE_NAME(NAME, 3), MERGE_NAME(NAME, 4)) #elif GBUFFERMATERIAL_COUNT == 6 #define OUTPUT_GBUFFER(NAME) \ out GBufferType0 MERGE_NAME(NAME, 0) : SV_Target0, \ out GBufferType1 MERGE_NAME(NAME, 1) : SV_Target1, \ out GBufferType2 MERGE_NAME(NAME, 2) : SV_Target2, \ out GBufferType3 MERGE_NAME(NAME, 3) : SV_Target3, \ out GBufferType4 MERGE_NAME(NAME, 4) : SV_Target4, \ out GBufferType5 MERGE_NAME(NAME, 5) : SV_Target5 #define ENCODE_INTO_GBUFFER(SURFACE_DATA, BUILTIN_DATA, UNPOSITIONSS, NAME) EncodeIntoGBuffer(SURFACE_DATA, BUILTIN_DATA, UNPOSITIONSS, MERGE_NAME(NAME, 0), MERGE_NAME(NAME, 1), MERGE_NAME(NAME, 2), MERGE_NAME(NAME, 3), MERGE_NAME(NAME, 4), MERGE_NAME(NAME, 5)) #elif GBUFFERMATERIAL_COUNT == 7 #define OUTPUT_GBUFFER(NAME) \ out GBufferType0 MERGE_NAME(NAME, 0) : SV_Target0, \ out GBufferType1 MERGE_NAME(NAME, 1) : SV_Target1, \ out GBufferType2 MERGE_NAME(NAME, 2) : SV_Target2, \ out GBufferType3 MERGE_NAME(NAME, 3) : SV_Target3, \ out GBufferType4 MERGE_NAME(NAME, 4) : SV_Target4, \ out GBufferType5 MERGE_NAME(NAME, 5) : SV_Target5, \ out GBufferType6 MERGE_NAME(NAME, 6) : SV_Target6 #define ENCODE_INTO_GBUFFER(SURFACE_DATA, BUILTIN_DATA, UNPOSITIONSS, NAME) EncodeIntoGBuffer(SURFACE_DATA, BUILTIN_DATA, UNPOSITIONSS, MERGE_NAME(NAME, 0), MERGE_NAME(NAME, 1), MERGE_NAME(NAME, 2), MERGE_NAME(NAME, 3), MERGE_NAME(NAME, 4), MERGE_NAME(NAME, 5), MERGE_NAME(NAME, 6)) #elif GBUFFERMATERIAL_COUNT == 8 #define OUTPUT_GBUFFER(NAME) \ out GBufferType0 MERGE_NAME(NAME, 0) : SV_Target0, \ out GBufferType1 MERGE_NAME(NAME, 1) : SV_Target1, \ out GBufferType2 MERGE_NAME(NAME, 2) : SV_Target2, \ out GBufferType3 MERGE_NAME(NAME, 3) : SV_Target3, \ out GBufferType4 MERGE_NAME(NAME, 4) : SV_Target4, \ out GBufferType5 MERGE_NAME(NAME, 5) : SV_Target5, \ out GBufferType6 MERGE_NAME(NAME, 6) : SV_Target6, \ out GBufferType7 MERGE_NAME(NAME, 7) : SV_Target7 #define ENCODE_INTO_GBUFFER(SURFACE_DATA, BUILTIN_DATA, UNPOSITIONSS, NAME) EncodeIntoGBuffer(SURFACE_DATA, BUILTIN_DATA, UNPOSITIONSS, MERGE_NAME(NAME, 0), MERGE_NAME(NAME, 1), MERGE_NAME(NAME, 2), MERGE_NAME(NAME, 3), MERGE_NAME(NAME, 4), MERGE_NAME(NAME, 5), MERGE_NAME(NAME, 6), MERGE_NAME(NAME, 7)) #endif #define DECODE_FROM_GBUFFER(UNPOSITIONSS, FEATURE_FLAGS, BSDF_DATA, BUILTIN_DATA) DecodeFromGBuffer(UNPOSITIONSS, FEATURE_FLAGS, BSDF_DATA, BUILTIN_DATA) #define MATERIAL_FEATURE_FLAGS_FROM_GBUFFER(UNPOSITIONSS) MaterialFeatureFlagsFromGBuffer(UNPOSITIONSS) #endif // #ifdef GBUFFERMATERIAL_COUNT #endif // UNITY_MATERIAL_INCLUDED