using UnityEngine; using UnityEngine.Rendering; using UnityEngine.Experimental.Rendering; // Very basic scriptable rendering loop example: // - Use with BasicRenderLoopShader.shader (the loop expects "BasicPass" pass type to exist) // - Supports up to 8 enabled lights in the scene (directional, point or spot) // - Does the same physically based BRDF as the Standard shader // - No shadows // - This loop also does not setup lightmaps, light probes, reflection probes or light cookies [ExecuteInEditMode] public class BasicRenderLoop : MonoBehaviour { private ShaderPassName shaderPassBasic; public void OnEnable () { shaderPassBasic = new ShaderPassName ("BasicPass"); RenderLoop.renderLoopDelegate += Render; } public void OnDisable () { RenderLoop.renderLoopDelegate -= Render; } // Main entry point for our scriptable render loop bool Render (Camera[] cameras, RenderLoop loop) { foreach (var camera in cameras) { // Culling CullingParameters cullingParams; if (!CullResults.GetCullingParameters (camera, out cullingParams)) continue; CullResults cull = CullResults.Cull (ref cullingParams, loop); // Setup camera for rendering (sets render target, view/projection matrices and other // per-camera built-in shader variables). loop.SetupCameraProperties (camera); // Setup global lighting shader variables SetupLightShaderVariables (cull.visibleLights, loop); // Draw opaque objects using BasicPass shader pass var settings = new DrawRendererSettings (cull, camera, shaderPassBasic); settings.sorting.sortOptions = SortOptions.SortByMaterialThenMesh; settings.inputCullingOptions.SetQueuesOpaque (); loop.DrawRenderers (ref settings); // Draw skybox loop.DrawSkybox (camera); // Draw transparent objects using BasicPass shader pass settings.sorting.sortOptions = SortOptions.BackToFront; // sort back to front settings.inputCullingOptions.SetQueuesTransparent (); loop.DrawRenderers (ref settings); loop.Submit (); } return true; } // Setup lighting variables for shader to use static void SetupLightShaderVariables (VisibleLight[] lights, RenderLoop loop) { // We only support up to 8 visible lights here. More complex approaches would // be doing some sort of per-object light setups, but here we go for simplest possible // approach. const int kMaxLights = 8; // Just take first 8 lights. Possible improvements: sort lights by intensity or distance // to the viewer, so that "most important" lights in the scene are picked, and not the 8 // that happened to be first. int lightCount = Mathf.Min (lights.Length, kMaxLights); // Prepare light data Vector4[] lightColors = new Vector4[kMaxLights]; Vector4[] lightPositions = new Vector4[kMaxLights]; Vector4[] lightSpotDirections = new Vector4[kMaxLights]; Vector4[] lightAtten = new Vector4[kMaxLights]; for (var i = 0; i < lightCount; ++i) { VisibleLight light = lights[i]; lightColors[i] = light.finalColor; if (light.lightType == LightType.Directional) { // light position for directional lights is: (-direction, 0) var dir = light.localToWorld.GetColumn (2); lightPositions[i] = new Vector4 (-dir.x, -dir.y, -dir.z, 0); } else { // light position for point/spot lights is: (position, 1) var pos = light.localToWorld.GetColumn (3); lightPositions[i] = new Vector4 (pos.x, pos.y, pos.z, 1); } // attenuation set in a way where distance attenuation can be computed: // float lengthSq = dot(toLight, toLight); // float atten = 1.0 / (1.0 + lengthSq * LightAtten[i].z); // and spot cone attenuation: // float rho = max (0, dot(normalize(toLight), SpotDirection[i].xyz)); // float spotAtt = (rho - LightAtten[i].x) * LightAtten[i].y; // spotAtt = saturate(spotAtt); // and the above works for all light types, i.e. spot light code works out // to correct math for point & directional lights as well. float rangeSq = light.range * light.range; float quadAtten = (light.lightType == LightType.Directional) ? 0.0f : 25.0f / rangeSq; // spot direction & attenuation if (light.lightType == LightType.Spot) { var dir = light.localToWorld.GetColumn (2); lightSpotDirections[i] = new Vector4 (-dir.x, -dir.y, -dir.z, 0); float radAngle = Mathf.Deg2Rad * light.light.spotAngle; float cosTheta = Mathf.Cos (radAngle * 0.25f); float cosPhi = Mathf.Cos (radAngle * 0.5f); float cosDiff = cosTheta - cosPhi; lightAtten[i] = new Vector4 (cosPhi, (cosDiff != 0.0f) ? 1.0f / cosDiff : 1.0f, quadAtten, rangeSq); } else { // non-spot light lightSpotDirections[i] = new Vector4 (0, 0, 1, 0); lightAtten[i] = new Vector4 (-1, 1, quadAtten, rangeSq); } } // ambient lighting spherical harmonics values const int kSHCoefficients = 7; Vector4[] shConstants = new Vector4[kSHCoefficients]; SphericalHarmonicsL2 ambientSH = RenderSettings.ambientProbe * RenderSettings.ambientIntensity; GetShaderConstantsFromNormalizedSH (ref ambientSH, shConstants); // setup global shader variables to contain all the data computed above CommandBuffer cmd = new CommandBuffer(); cmd.SetGlobalVectorArray ("globalLightColor", lightColors); cmd.SetGlobalVectorArray ("globalLightPos", lightPositions); cmd.SetGlobalVectorArray ("globalLightSpotDir", lightSpotDirections); cmd.SetGlobalVectorArray ("globalLightAtten", lightAtten); cmd.SetGlobalVector ("globalLightCount", new Vector4 (lightCount, 0, 0, 0)); cmd.SetGlobalVectorArray ("globalSH", shConstants); loop.ExecuteCommandBuffer (cmd); cmd.Dispose (); } // Prepare L2 spherical harmonics values for efficient evaluation in a shader static void GetShaderConstantsFromNormalizedSH (ref SphericalHarmonicsL2 ambientProbe, Vector4[] outCoefficients) { for (int channelIdx = 0; channelIdx < 3; ++channelIdx) { // Constant + Linear // In the shader we multiply the normal is not swizzled, so it's normal.xyz. // Swizzle the coefficients to be in { x, y, z, DC } order. outCoefficients[channelIdx].x = ambientProbe[channelIdx, 3]; outCoefficients[channelIdx].y = ambientProbe[channelIdx, 1]; outCoefficients[channelIdx].z = ambientProbe[channelIdx, 2]; outCoefficients[channelIdx].w = ambientProbe[channelIdx, 0] - ambientProbe[channelIdx, 6]; // Quadratic polynomials outCoefficients[channelIdx + 3].x = ambientProbe[channelIdx, 4]; outCoefficients[channelIdx + 3].y = ambientProbe[channelIdx, 5]; outCoefficients[channelIdx + 3].z = ambientProbe[channelIdx, 6] * 3.0f; outCoefficients[channelIdx + 3].w = ambientProbe[channelIdx, 7]; } // Final quadratic polynomial outCoefficients[6].x = ambientProbe[0, 8]; outCoefficients[6].y = ambientProbe[1, 8]; outCoefficients[6].z = ambientProbe[2, 8]; outCoefficients[6].w = 1.0f; } }