#ifndef LIGHTWEIGHT_LIGHTING_INCLUDED #define LIGHTWEIGHT_LIGHTING_INCLUDED #include "LightweightCore.cginc" #include "LightweightShadows.cginc" #define PI 3.14159265359f #define kDieletricSpec half4(0.04, 0.04, 0.04, 1.0 - 0.04) // standard dielectric reflectivity coef at incident angle (= 4%) #define MAX_VISIBLE_LIGHTS 16 #ifndef UNITY_SPECCUBE_LOD_STEPS #define UNITY_SPECCUBE_LOD_STEPS 6 #endif #ifdef NO_ADDITIONAL_LIGHTS #undef _ADDITIONAL_LIGHTS #endif // If lightmap is not defined than we evaluate GI (ambient + probes) from SH // We might do it fully or partially in vertex to save shader ALU #if !defined(LIGHTMAP_ON) #if SHADER_TARGET < 30 // Evaluates SH fully in vertex #define EVALUATE_SH_VERTEX #else // Evaluates L2 SH in vertex and L0L1 in pixel #define EVALUATE_SH_MIXED #endif #endif // Main light initialized without indexing #define INITIALIZE_MAIN_LIGHT(light) \ light.pos = _MainLightPosition; \ light.color = _MainLightColor; \ light.atten = _MainLightAttenuationParams; \ light.spotDir = _MainLightSpotDir; // Indexing might have a performance hit for old mobile hardware #define INITIALIZE_LIGHT(light, i) \ half4 indices = (i < 4) ? unity_4LightIndices0 : unity_4LightIndices1; \ int index = (i < 4) ? i : i - 4; \ int lightIndex = indices[index]; \ light.pos = _AdditionalLightPosition[lightIndex]; \ light.color = _AdditionalLightColor[lightIndex]; \ light.atten = _AdditionalLightAttenuationParams[lightIndex]; \ light.spotDir = _AdditionalLightSpotDir[lightIndex] CBUFFER_START(_PerObject) half4 unity_LightIndicesOffsetAndCount; half4 unity_4LightIndices0; half4 unity_4LightIndices1; CBUFFER_END CBUFFER_START(_PerCamera) float4 _MainLightPosition; half4 _MainLightColor; float4 _MainLightAttenuationParams; half4 _MainLightSpotDir; half4 _AdditionalLightCount; float4 _AdditionalLightPosition[MAX_VISIBLE_LIGHTS]; half4 _AdditionalLightColor[MAX_VISIBLE_LIGHTS]; float4 _AdditionalLightAttenuationParams[MAX_VISIBLE_LIGHTS]; half4 _AdditionalLightSpotDir[MAX_VISIBLE_LIGHTS]; CBUFFER_END CBUFFER_START(_PerFrame) half4 _GlossyEnvironmentColor; sampler2D _AttenuationTexture; CBUFFER_END struct SurfaceData { half3 albedo; half3 specular; half metallic; half smoothness; half3 normal; half3 emission; half occlusion; half alpha; }; struct LightInput { float4 pos; half4 color; float4 atten; half4 spotDir; }; struct BRDFData { half3 diffuse; half3 specular; half perceptualRoughness; half roughness; half grazingTerm; }; half SpecularReflectivity(half3 specular) { #if (SHADER_TARGET < 30) // SM2.0: instruction count limitation // SM2.0: simplified SpecularStrength return specular.r; // Red channel - because most metals are either monocrhome or with redish/yellowish tint #else return max(max(specular.r, specular.g), specular.b); #endif } inline void InitializeBRDFData(half3 albedo, half metallic, half3 specular, half smoothness, half alpha, out BRDFData outBRDFData) { #ifdef _SPECULAR_SETUP half reflectivity = SpecularReflectivity(specular); outBRDFData.diffuse = albedo * (half3(1.0h, 1.0h, 1.0h) - specular); outBRDFData.specular = specular; #else // We'll need oneMinusReflectivity, so // 1-reflectivity = 1-lerp(dielectricSpec, 1, metallic) = lerp(1-dielectricSpec, 0, metallic) // store (1-dielectricSpec) in kDieletricSpec.a, then // 1-reflectivity = lerp(alpha, 0, metallic) = alpha + metallic*(0 - alpha) = // = alpha - metallic * alpha half oneMinusDielectricSpec = kDieletricSpec.a; half oneMinusReflectivity = oneMinusDielectricSpec - metallic * oneMinusDielectricSpec; half reflectivity = 1.0 - oneMinusReflectivity; outBRDFData.diffuse = albedo * oneMinusReflectivity; outBRDFData.specular = lerp(kDieletricSpec.rgb, albedo, metallic); #endif outBRDFData.grazingTerm = saturate(smoothness + reflectivity); outBRDFData.perceptualRoughness = 1.0h - smoothness; outBRDFData.roughness = outBRDFData.perceptualRoughness * outBRDFData.perceptualRoughness; #ifdef _ALPHAPREMULTIPLY_ON outBRDFData.diffuse *= alpha; alpha = reflectivity + alpha * (1.0 - reflectivity); #endif } // Based on Minimalist CookTorrance BRDF // Implementation is slightly different from original derivation: http://www.thetenthplanet.de/archives/255 // // * NDF [Modified] GGX // * Modified Kelemen and Szirmay-​Kalos for Visibility term // * Fresnel approximated with 1/LdotH half3 LightweightBDRF(BRDFData brdfData, half roughness2, half3 normal, half3 lightDirection, half3 viewDir) { #ifndef _SPECULARHIGHLIGHTS_OFF half3 halfDir = SafeNormalize(lightDirection + viewDir); half NoH = saturate(dot(normal, halfDir)); half LoH = saturate(dot(lightDirection, halfDir)); // GGX Distribution multiplied by combined approximation of Visibility and Fresnel // See "Optimizing PBR for Mobile" from Siggraph 2015 moving mobile graphics course // https://community.arm.com/events/1155 half d = NoH * NoH * (roughness2 - 1.h) + 1.00001h; half LoH2 = LoH * LoH; half specularTerm = roughness2 / ((d * d) * max(0.1h, LoH2) * (brdfData.roughness + 0.5h) * 4); // on mobiles (where half actually means something) denominator have risk of overflow // clamp below was added specifically to "fix" that, but dx compiler (we convert bytecode to metal/gles) // sees that specularTerm have only non-negative terms, so it skips max(0,..) in clamp (leaving only min(100,...)) #if defined (SHADER_API_MOBILE) specularTerm = specularTerm - 1e-4h; #endif #if defined (SHADER_API_MOBILE) specularTerm = clamp(specularTerm, 0.0, 100.0); // Prevent FP16 overflow on mobiles #endif half3 color = specularTerm * brdfData.specular + brdfData.diffuse; return color; #else return brdfData.diffuse; #endif } half3 LightweightEnvironmentBRDF(BRDFData brdfData, half3 indirectDiffuse, half3 indirectSpecular, half roughness2, half fresnelTerm) { half3 c = indirectDiffuse * brdfData.diffuse; float surfaceReduction = 1.0 / (roughness2 + 1.0); c += surfaceReduction * indirectSpecular * lerp(brdfData.specular, brdfData.grazingTerm, fresnelTerm); return c; } half3 GlossyEnvironment(half3 reflectVector, half perceptualRoughness) { #if !defined(_GLOSSYREFLECTIONS_OFF) half roughness = perceptualRoughness * (1.7 - 0.7 * perceptualRoughness); half mip = roughness * UNITY_SPECCUBE_LOD_STEPS; half4 rgbm = UNITY_SAMPLE_TEXCUBE_LOD(unity_SpecCube0, reflectVector, mip); return DecodeHDR(rgbm, unity_SpecCube0_HDR); #endif return _GlossyEnvironmentColor; } half SpotAttenuation(half3 spotDirection, half3 lightDirection, float4 attenuationParams) { // Spot Attenuation with a linear falloff can be defined as // (SdotL - cosOuterAngle) / (cosInnerAngle - cosOuterAngle) // This can be rewritten as // invAngleRange = 1.0 / (cosInnerAngle - cosOuterAngle) // SdotL * invAngleRange + (-cosOuterAngle * invAngleRange) // If we precompute the terms in a MAD instruction half SdotL = dot(spotDirection, lightDirection); // attenuationParams.x = invAngleRange // attenuationParams.y = (-cosOuterAngle invAngleRange) return saturate(SdotL * attenuationParams.x + attenuationParams.y); } // In per-vertex falloff there's no smooth falloff to light range. A hard cut will be noticed inline half ComputeVertexLightAttenuation(LightInput lightInput, half3 normal, float3 worldPos, out half3 lightDirection) { float4 attenuationParams = lightInput.atten; float3 posToLightVec = lightInput.pos - worldPos * lightInput.pos.w; float distanceSqr = max(dot(posToLightVec, posToLightVec), 0.001); // normalized light dir lightDirection = half3(posToLightVec * rsqrt(distanceSqr)); // attenuationParams.z = kQuadFallOff = (25.0) / (lightRange * lightRange) // attenuationParams.w = lightRange * lightRange half lightAtten = half(1.0 / (1.0 + distanceSqr * attenuationParams.z)); lightAtten *= SpotAttenuation(lightInput.spotDir.xyz, lightDirection, attenuationParams); return lightAtten; } // In per-pixel falloff attenuation smoothly decreases to light range. inline half ComputePixelLightAttenuation(LightInput lightInput, half3 normal, float3 worldPos, out half3 lightDirection) { float4 attenuationParams = lightInput.atten; float3 posToLightVec = lightInput.pos.xyz - worldPos * lightInput.pos.w; float distanceSqr = max(dot(posToLightVec, posToLightVec), 0.001); // normalized light dir lightDirection = half3(posToLightVec * rsqrt(distanceSqr)); float u = (distanceSqr * attenuationParams.z) / attenuationParams.w; half lightAtten = tex2D(_AttenuationTexture, float2(u, 0.0)).a; lightAtten *= SpotAttenuation(lightInput.spotDir.xyz, lightDirection, attenuationParams); return lightAtten; } inline half ComputeMainLightAttenuation(LightInput lightInput, half3 normal, float3 worldPos, out half3 lightDirection) { #ifdef _MAIN_DIRECTIONAL_LIGHT // Light pos holds normalized light dir lightDirection = lightInput.pos; return 1.0; #else return ComputePixelLightAttenuation(lightInput, normal, worldPos, lightDirection); #endif } half4 LightweightFragmentPBR(float3 positionWS, half3 normalWS, half3 viewDirectionWS, half fogFactor, half3 diffuseGI, half3 albedo, half metallic, half3 specular, half smoothness, half occlusion, half3 emission, half alpha) { BRDFData brdfData; InitializeBRDFData(albedo, metallic, specular, smoothness, alpha, brdfData); // TODO: When refactoring shadows remove dependency from vertex normal half3 vertexNormal = normalWS; half3 reflectVec = reflect(-viewDirectionWS, normalWS); half roughness2 = brdfData.roughness * brdfData.roughness; half3 indirectDiffuse = diffuseGI * occlusion; half3 indirectSpecular = GlossyEnvironment(reflectVec, brdfData.perceptualRoughness) * occlusion; // PBS half fresnelTerm = _Pow4(1.0 - saturate(dot(normalWS, viewDirectionWS))); half3 color = LightweightEnvironmentBRDF(brdfData, indirectDiffuse, indirectSpecular, roughness2, fresnelTerm); half3 lightDirectionWS; LightInput light; INITIALIZE_MAIN_LIGHT(light); half lightAtten = ComputeMainLightAttenuation(light, normalWS, positionWS, lightDirectionWS); lightAtten *= LIGHTWEIGHT_SHADOW_ATTENUATION(positionWS, normalize(vertexNormal), _ShadowLightDirection.xyz); half NdotL = saturate(dot(normalWS, lightDirectionWS)); half3 radiance = light.color * (lightAtten * NdotL); color += LightweightBDRF(brdfData, roughness2, normalWS, lightDirectionWS, viewDirectionWS) * radiance; #ifdef _ADDITIONAL_LIGHTS int pixelLightCount = min(_AdditionalLightCount.x, unity_LightIndicesOffsetAndCount.y); for (int lightIter = 0; lightIter < pixelLightCount; ++lightIter) { LightInput light; INITIALIZE_LIGHT(light, lightIter); half lightAtten = ComputePixelLightAttenuation(light, normalWS, positionWS, lightDirectionWS); half NdotL = saturate(dot(normalWS, lightDirectionWS)); half3 radiance = light.color * (lightAtten * NdotL); color += LightweightBDRF(brdfData, roughness2, normalWS, lightDirectionWS, viewDirectionWS) * radiance; } #endif color += emission; // Computes fog factor per-vertex ApplyFog(color, fogFactor); return OutputColor(color, alpha); } inline half3 LightingLambert(half3 diffuseColor, half3 lightDir, half3 normal, half atten) { half NdotL = saturate(dot(normal, lightDir)); return diffuseColor * (NdotL * atten); } inline half3 LightingBlinnPhong(half3 diffuseColor, half4 specularGloss, half3 lightDir, half3 normal, half3 viewDir, half atten, half shininess) { half NdotL = saturate(dot(normal, lightDir)); half3 diffuse = diffuseColor * NdotL; half3 halfVec = normalize(lightDir + viewDir); half NdotH = saturate(dot(normal, halfVec)); half3 specular = specularGloss.rgb * pow(NdotH, shininess) * specularGloss.a; return (diffuse + specular) * atten; } #endif