// Ref: https://gist.github.com/TheRealMJP/c83b8c0f46b63f3a88a5986f4fa982b1 from MJP // Samples a texture with Catmull-Rom filtering, using 9 texture fetches instead of 16. // See http://vec3.ca/bicubic-filtering-in-fewer-taps/ for more details float4 SampleTextureCatmullRom(Texture2D tex, SamplerState linearSampler, float2 uv, float2 texSize) { // We're going to sample a a 4x4 grid of texels surrounding the target UV coordinate. We'll do this by rounding // down the sample location to get the exact center of our "starting" texel. The starting texel will be at // location [1, 1] in the grid, where [0, 0] is the top left corner. float2 samplePos = uv * texSize; float2 texPos1 = floor(samplePos - 0.5f) + 0.5f; // Compute the fractional offset from our starting texel to our original sample location, which we'll // feed into the Catmull-Rom spline function to get our filter weights. float2 f = samplePos - texPos1; float2 f2 = f * f; float2 f3 = f2 * f; // Compute the Catmull-Rom weights using the fractional offset that we calculated earlier. // These equations are pre-expanded based on our knowledge of where the texels will be located, // which lets us avoid having to evaluate a piece-wise function. float2 w0 = (1.0f / 6.0f) * (-3.0f * f3 + 6.0f * f2 - 3.0f * f); float2 w1 = (1.0f / 6.0f) * (9.0f * f3 - 15.0f * f2 + 6.0f); float2 w2 = (1.0f / 6.0f) * (-9.0f * f3 + 12.0f * f2 + 3.0f * f); float2 w3 = (1.0f / 6.0f) * (3.0f * f3 - 3.0f * f2); // Otim by Vlad, to test // float2 w0 = (1.0 / 2.0) * f * (-1.0 + f * (2.0 - f)); // float2 w1 = (1.0 / 6.0) * f2 * (-15.0 + 9.0 * f)) + 1.0; // float2 w2 = (1.0 / 6.0) * f * (3.0 + f * (12.0 - f * 9.0)); // float2 w3 = (1.0 / 2.0) * f2 * (f - 1.0); // Work out weighting factors and sampling offsets that will let us use bilinear filtering to // simultaneously evaluate the middle 2 samples from the 4x4 grid. float2 w12 = w1 + w2; float2 offset12 = w2 / (w1 + w2); // Compute the final UV coordinates we'll use for sampling the texture float2 texPos0 = texPos1 - 1; float2 texPos3 = texPos1 + 2; float2 texPos12 = texPos1 + offset12; texPos0 /= texSize; texPos3 /= texSize; texPos12 /= texSize; float4 result = 0.0f; result += tex.SampleLevel(linearSampler, float2(texPos0.x, texPos0.y), 0.0f) * w0.x * w0.y; result += tex.SampleLevel(linearSampler, float2(texPos12.x, texPos0.y), 0.0f) * w12.x * w0.y; result += tex.SampleLevel(linearSampler, float2(texPos3.x, texPos0.y), 0.0f) * w3.x * w0.y; result += tex.SampleLevel(linearSampler, float2(texPos0.x, texPos12.y), 0.0f) * w0.x * w12.y; result += tex.SampleLevel(linearSampler, float2(texPos12.x, texPos12.y), 0.0f) * w12.x * w12.y; result += tex.SampleLevel(linearSampler, float2(texPos3.x, texPos12.y), 0.0f) * w3.x * w12.y; result += tex.SampleLevel(linearSampler, float2(texPos0.x, texPos3.y), 0.0f) * w0.x * w3.y; result += tex.SampleLevel(linearSampler, float2(texPos12.x, texPos3.y), 0.0f) * w12.x * w3.y; result += tex.SampleLevel(linearSampler, float2(texPos3.x, texPos3.y), 0.0f) * w3.x * w3.y; return result; } /* // manual tri-linearly interpolated texture fetch // not really needed: used hard-wired texture interpolation vec4 manualTexture3D( sampler3D samp, vec3 p ){ vec3 qa = p*uvMapSize + vec3(0.5); vec3 qi = floor(qa); qa -= qi; qi -= vec3(0.5); return mix( mix( mix( texture3D( samp, (qi+vec3(0.0,0.0,0.0))*oneOverUvMapSize ), texture3D( samp, (qi+vec3(1.0,0.0,0.0))*oneOverUvMapSize ), qa.x ), mix( texture3D( samp, (qi+vec3(0.0,1.0,0.0))*oneOverUvMapSize ), texture3D( samp, (qi+vec3(1.0,1.0,0.0))*oneOverUvMapSize ), qa.x ), qa.y ), mix( mix( texture3D( samp, (qi+vec3(0.0,0.0,1.0))*oneOverUvMapSize ), texture3D( samp, (qi+vec3(1.0,0.0,1.0))*oneOverUvMapSize ), qa.x ), mix( texture3D( samp, (qi+vec3(0.0,1.0,1.0))*oneOverUvMapSize ), texture3D( samp, (qi+vec3(1.0,1.0,1.0))*oneOverUvMapSize ), qa.x ), qa.y ), qa.z ); } */