using System.Collections.Generic; using UnityEngine.Rendering; using System; using System.Diagnostics; using System.Linq; using UnityEngine.Rendering.PostProcessing; using UnityEngine.Experimental.GlobalIllumination; using UnityEngine.XR; namespace UnityEngine.Experimental.Rendering.HDPipeline { public class HDRenderPipeline : RenderPipeline { enum ForwardPass { Opaque, PreRefraction, Transparent } static readonly string[] k_ForwardPassDebugName = { "Forward Opaque Debug", "Forward PreRefraction Debug", "Forward Transparent Debug" }; static readonly string[] k_ForwardPassName = { "Forward Opaque", "Forward PreRefraction", "Forward Transparent" }; readonly HDRenderPipelineAsset m_Asset; public HDRenderPipelineAsset asset { get { return m_Asset; } } DiffusionProfileSettings m_InternalSSSAsset; public DiffusionProfileSettings diffusionProfileSettings { get { // If no SSS asset is set, build / reuse an internal one for simplicity var asset = m_Asset.diffusionProfileSettings; if (asset == null) { if (m_InternalSSSAsset == null) m_InternalSSSAsset = ScriptableObject.CreateInstance(); asset = m_InternalSSSAsset; } return asset; } } public RenderPipelineSettings renderPipelineSettings { get { return m_Asset.renderPipelineSettings; } } public bool IsInternalDiffusionProfile(DiffusionProfileSettings profile) { return m_InternalSSSAsset == profile; } readonly RenderPipelineMaterial m_DeferredMaterial; readonly List m_MaterialList = new List(); readonly GBufferManager m_GbufferManager; readonly DBufferManager m_DbufferManager; readonly SubsurfaceScatteringManager m_SSSBufferManager = new SubsurfaceScatteringManager(); readonly NormalBufferManager m_NormalBufferManager = new NormalBufferManager(); // Renderer Bake configuration can vary depends on if shadow mask is enabled or no RendererConfiguration m_currentRendererConfigurationBakedLighting = HDUtils.k_RendererConfigurationBakedLighting; Material m_CopyStencilForNoLighting; Material m_CopyDepth; GPUCopy m_GPUCopy; BufferPyramid m_BufferPyramid; IBLFilterGGX m_IBLFilterGGX = null; ComputeShader m_applyDistortionCS { get { return m_Asset.renderPipelineResources.applyDistortionCS; } } int m_applyDistortionKernel; Material m_CameraMotionVectorsMaterial; // Debug material Material m_DebugViewMaterialGBuffer; Material m_DebugViewMaterialGBufferShadowMask; Material m_currentDebugViewMaterialGBuffer; Material m_DebugDisplayLatlong; Material m_DebugFullScreen; Material m_DebugColorPicker; Material m_Blit; Material m_ErrorMaterial; RenderTargetIdentifier[] m_MRTCache2 = new RenderTargetIdentifier[2]; // 'm_CameraColorBuffer' does not contain diffuse lighting of SSS materials until the SSS pass. It is stored within 'm_CameraSssDiffuseLightingBuffer'. RTHandleSystem.RTHandle m_CameraColorBuffer; RTHandleSystem.RTHandle m_CameraSssDiffuseLightingBuffer; RTHandleSystem.RTHandle m_CameraDepthStencilBuffer; RTHandleSystem.RTHandle m_CameraDepthBufferCopy; RTHandleSystem.RTHandle m_CameraStencilBufferCopy; RTHandleSystem.RTHandle m_VelocityBuffer; RTHandleSystem.RTHandle m_DeferredShadowBuffer; RTHandleSystem.RTHandle m_AmbientOcclusionBuffer; RTHandleSystem.RTHandle m_DistortionBuffer; // The pass "SRPDefaultUnlit" is a fall back to legacy unlit rendering and is required to support unity 2d + unity UI that render in the scene. ShaderPassName[] m_ForwardAndForwardOnlyPassNames = { HDShaderPassNames.s_ForwardOnlyName, HDShaderPassNames.s_ForwardName, HDShaderPassNames.s_SRPDefaultUnlitName }; ShaderPassName[] m_ForwardOnlyPassNames = { HDShaderPassNames.s_ForwardOnlyName, HDShaderPassNames.s_SRPDefaultUnlitName }; ShaderPassName[] m_AllTransparentPassNames = { HDShaderPassNames.s_TransparentBackfaceName, HDShaderPassNames.s_ForwardOnlyName, HDShaderPassNames.s_ForwardName, HDShaderPassNames.s_SRPDefaultUnlitName }; ShaderPassName[] m_AllForwardOpaquePassNames = { HDShaderPassNames.s_ForwardOnlyName, HDShaderPassNames.s_ForwardName, HDShaderPassNames.s_SRPDefaultUnlitName }; ShaderPassName[] m_DepthOnlyAndDepthForwardOnlyPassNames = { HDShaderPassNames.s_DepthForwardOnlyName, HDShaderPassNames.s_DepthOnlyName }; ShaderPassName[] m_DepthForwardOnlyPassNames = { HDShaderPassNames.s_DepthForwardOnlyName }; ShaderPassName[] m_DepthOnlyPassNames = { HDShaderPassNames.s_DepthOnlyName }; ShaderPassName[] m_TransparentDepthPrepassNames = { HDShaderPassNames.s_TransparentDepthPrepassName }; ShaderPassName[] m_TransparentDepthPostpassNames = { HDShaderPassNames.s_TransparentDepthPostpassName }; ShaderPassName[] m_ForwardErrorPassNames = { HDShaderPassNames.s_AlwaysName, HDShaderPassNames.s_ForwardBaseName, HDShaderPassNames.s_DeferredName, HDShaderPassNames.s_PrepassBaseName, HDShaderPassNames.s_VertexName, HDShaderPassNames.s_VertexLMRGBMName, HDShaderPassNames.s_VertexLMName }; ShaderPassName[] m_SinglePassName = new ShaderPassName[1]; // Stencil usage in HDRenderPipeline. // Currently we use only 2 bits to identify the kind of lighting that is expected from the render pipeline // Usage is define in LightDefinitions.cs [Flags] public enum StencilBitMask { Clear = 0, // 0x0 LightingMask = 7, // 0x7 - 3 bit ObjectVelocity = 128, // 0x80 - 1 bit All = 255 // 0xFF - 8 bit } RenderStateBlock m_DepthStateOpaque; // Detect when windows size is changing int m_CurrentWidth; int m_CurrentHeight; // Use to detect frame changes uint m_FrameCount; float m_LastTime, m_Time; public int GetCurrentShadowCount() { return m_LightLoop.GetCurrentShadowCount(); } public int GetShadowAtlasCount() { return m_LightLoop.GetShadowAtlasCount(); } public int GetDecalAtlasMipCount() { int highestDim = Math.Max(renderPipelineSettings.decalSettings.atlasWidth, renderPipelineSettings.decalSettings.atlasHeight); return (int)Math.Log(highestDim, 2); } public int GetShadowSliceCount(uint atlasIndex) { return m_LightLoop.GetShadowSliceCount(atlasIndex); } readonly SkyManager m_SkyManager = new SkyManager(); readonly LightLoop m_LightLoop = new LightLoop(); readonly ShadowSettings m_ShadowSettings = new ShadowSettings(); readonly VolumetricLightingSystem m_VolumetricLightingSystem = new VolumetricLightingSystem(); // Debugging MaterialPropertyBlock m_SharedPropertyBlock = new MaterialPropertyBlock(); DebugDisplaySettings m_DebugDisplaySettings = new DebugDisplaySettings(); public DebugDisplaySettings debugDisplaySettings { get { return m_DebugDisplaySettings; } } static DebugDisplaySettings s_NeutralDebugDisplaySettings = new DebugDisplaySettings(); DebugDisplaySettings m_CurrentDebugDisplaySettings; RTHandleSystem.RTHandle m_DebugColorPickerBuffer; RTHandleSystem.RTHandle m_DebugFullScreenTempBuffer; bool m_FullScreenDebugPushed; bool m_ValidAPI; // False by default mean we render normally, true mean we don't render anything public Material GetBlitMaterial() { return m_Blit; } ComputeBuffer m_DebugScreenSpaceTracingData = null; ScreenSpaceTracingDebug[] m_DebugScreenSpaceTracingDataArray = new ScreenSpaceTracingDebug[1]; public HDRenderPipeline(HDRenderPipelineAsset asset) { DebugManager.instance.RefreshEditor(); m_ValidAPI = true; if (!SetRenderingFeatures()) { m_ValidAPI = false; return; } m_Asset = asset; // Initial state of the RTHandle system. // Tells the system that we will require MSAA or not so that we can avoid wasteful render texture allocation. // TODO: Might want to initialize to at least the window resolution to avoid un-necessary re-alloc in the player RTHandles.Initialize(1, 1, m_Asset.renderPipelineSettings.supportMSAA, m_Asset.renderPipelineSettings.msaaSampleCount); m_GPUCopy = new GPUCopy(asset.renderPipelineResources.copyChannelCS); var bufferPyramidProcessor = new BufferPyramidProcessor( asset.renderPipelineResources.colorPyramidCS, asset.renderPipelineResources.depthPyramidCS, m_GPUCopy, new TexturePadding(asset.renderPipelineResources.texturePaddingCS) ); m_BufferPyramid = new BufferPyramid(bufferPyramidProcessor); EncodeBC6H.DefaultInstance = EncodeBC6H.DefaultInstance ?? new EncodeBC6H(asset.renderPipelineResources.encodeBC6HCS); m_ReflectionProbeCullResults = new ReflectionProbeCullResults(asset.reflectionSystemParameters); ReflectionSystem.SetParameters(asset.reflectionSystemParameters); // Scan material list and assign it m_MaterialList = HDUtils.GetRenderPipelineMaterialList(); // Find first material that have non 0 Gbuffer count and assign it as deferredMaterial m_DeferredMaterial = null; foreach (var material in m_MaterialList) { if (material.GetMaterialGBufferCount() > 0) m_DeferredMaterial = material; } // TODO: Handle the case of no Gbuffer material // TODO: I comment the assert here because m_DeferredMaterial for whatever reasons contain the correct class but with a "null" in the name instead of the real name and then trigger the assert // whereas it work. Don't know what is happening, DebugDisplay use the same code and name is correct there. // Debug.Assert(m_DeferredMaterial != null); m_GbufferManager = new GBufferManager(m_DeferredMaterial, m_Asset.renderPipelineSettings.supportShadowMask); m_DbufferManager = new DBufferManager(); m_SSSBufferManager.Build(asset); m_NormalBufferManager.Build(asset); // Initialize various compute shader resources m_applyDistortionKernel = m_applyDistortionCS.FindKernel("KMain"); // General material m_CopyStencilForNoLighting = CoreUtils.CreateEngineMaterial(asset.renderPipelineResources.copyStencilBuffer); m_CopyStencilForNoLighting.SetInt(HDShaderIDs._StencilRef, (int)StencilLightingUsage.NoLighting); m_CopyStencilForNoLighting.SetInt(HDShaderIDs._StencilMask, (int)StencilBitMask.LightingMask); m_CameraMotionVectorsMaterial = CoreUtils.CreateEngineMaterial(asset.renderPipelineResources.cameraMotionVectors); m_CopyDepth = CoreUtils.CreateEngineMaterial(asset.renderPipelineResources.copyDepthBuffer); InitializeDebugMaterials(); m_MaterialList.ForEach(material => material.Build(asset)); m_IBLFilterGGX = new IBLFilterGGX(asset.renderPipelineResources, bufferPyramidProcessor); m_LightLoop.Build(asset, m_ShadowSettings, m_IBLFilterGGX); m_SkyManager.Build(asset, m_IBLFilterGGX); m_VolumetricLightingSystem.Build(asset); m_DebugDisplaySettings.RegisterDebug(); #if UNITY_EDITOR // We don't need the debug of Scene View at runtime (each camera have its own debug settings) FrameSettings.RegisterDebug("Scene View", m_Asset.GetFrameSettings()); #endif m_DebugScreenSpaceTracingData = new ComputeBuffer(1, System.Runtime.InteropServices.Marshal.SizeOf(typeof(ScreenSpaceTracingDebug))); InitializeRenderTextures(); // For debugging MousePositionDebug.instance.Build(); InitializeRenderStateBlocks(); } void InitializeRenderTextures() { if (!m_Asset.renderPipelineSettings.supportOnlyForward) m_GbufferManager.CreateBuffers(); if (m_Asset.renderPipelineSettings.supportDBuffer) m_DbufferManager.CreateBuffers(); m_SSSBufferManager.InitSSSBuffers(m_GbufferManager, m_Asset.renderPipelineSettings); m_NormalBufferManager.InitNormalBuffers(m_GbufferManager, m_Asset.renderPipelineSettings); m_CameraColorBuffer = RTHandles.Alloc(Vector2.one, filterMode: FilterMode.Point, colorFormat: RenderTextureFormat.ARGBHalf, sRGB: false, enableRandomWrite: true, enableMSAA: true, name: "CameraColor"); m_CameraSssDiffuseLightingBuffer = RTHandles.Alloc(Vector2.one, filterMode: FilterMode.Point, colorFormat: RenderTextureFormat.RGB111110Float, sRGB: false, enableRandomWrite: true, enableMSAA: true, name: "CameraSSSDiffuseLighting"); m_CameraDepthStencilBuffer = RTHandles.Alloc(Vector2.one, depthBufferBits: DepthBits.Depth24, colorFormat: RenderTextureFormat.Depth, filterMode: FilterMode.Point, bindTextureMS: true, enableMSAA: true, name: "CameraDepthStencil"); if (NeedDepthBufferCopy()) { m_CameraDepthBufferCopy = RTHandles.Alloc(Vector2.one, depthBufferBits: DepthBits.Depth24, colorFormat: RenderTextureFormat.Depth, filterMode: FilterMode.Point, bindTextureMS: true, enableMSAA: true, name: "CameraDepthStencilCopy"); } // Technically we won't need this buffer in some cases, but nothing that we can determine at init time. m_CameraStencilBufferCopy = RTHandles.Alloc(Vector2.one, depthBufferBits: DepthBits.None, colorFormat: RenderTextureFormat.R8, sRGB: false, filterMode: FilterMode.Point, enableMSAA: true, name: "CameraStencilCopy"); // DXGI_FORMAT_R8_UINT is not supported by Unity if (m_Asset.renderPipelineSettings.supportSSAO) { m_AmbientOcclusionBuffer = RTHandles.Alloc(Vector2.one, filterMode: FilterMode.Bilinear, colorFormat: RenderTextureFormat.R8, sRGB: false, enableRandomWrite: true, name: "AmbientOcclusion"); } if (m_Asset.renderPipelineSettings.supportMotionVectors) { m_VelocityBuffer = RTHandles.Alloc(Vector2.one, filterMode: FilterMode.Point, colorFormat: Builtin.GetVelocityBufferFormat(), sRGB: Builtin.GetVelocityBufferSRGBFlag(), enableMSAA: true, name: "Velocity"); } m_DistortionBuffer = RTHandles.Alloc(Vector2.one, filterMode: FilterMode.Point, colorFormat: Builtin.GetDistortionBufferFormat(), sRGB: Builtin.GetDistortionBufferSRGBFlag(), name: "Distortion"); // TODO: For MSAA, we'll need to add a Draw path in order to support MSAA properly m_DeferredShadowBuffer = RTHandles.Alloc(Vector2.one, filterMode: FilterMode.Point, colorFormat: RenderTextureFormat.ARGB32, sRGB: false, enableRandomWrite: true, name: "DeferredShadow"); if (Debug.isDebugBuild) { m_DebugColorPickerBuffer = RTHandles.Alloc(Vector2.one, filterMode: FilterMode.Point, colorFormat: RenderTextureFormat.ARGBHalf, sRGB: false, name: "DebugColorPicker"); m_DebugFullScreenTempBuffer = RTHandles.Alloc(Vector2.one, filterMode: FilterMode.Point, colorFormat: RenderTextureFormat.ARGBHalf, sRGB: false, name: "DebugFullScreen"); } } void DestroyRenderTextures() { m_GbufferManager.DestroyBuffers(); m_DbufferManager.DestroyBuffers(); m_BufferPyramid.DestroyBuffers(); RTHandles.Release(m_CameraColorBuffer); RTHandles.Release(m_CameraSssDiffuseLightingBuffer); RTHandles.Release(m_CameraDepthStencilBuffer); RTHandles.Release(m_CameraDepthBufferCopy); RTHandles.Release(m_CameraStencilBufferCopy); RTHandles.Release(m_AmbientOcclusionBuffer); RTHandles.Release(m_VelocityBuffer); RTHandles.Release(m_DistortionBuffer); RTHandles.Release(m_DeferredShadowBuffer); RTHandles.Release(m_DebugColorPickerBuffer); RTHandles.Release(m_DebugFullScreenTempBuffer); m_DebugScreenSpaceTracingData.Release(); HDCamera.ClearAll(); } bool SetRenderingFeatures() { // Set subshader pipeline tag Shader.globalRenderPipeline = "HDRenderPipeline"; // HD use specific GraphicsSettings GraphicsSettings.lightsUseLinearIntensity = true; GraphicsSettings.lightsUseColorTemperature = true; // HD should always use the new batcher - TODO once fix are backport in 2018.2/staging //GraphicsSettings.useScriptableRenderPipelineBatching = true; SupportedRenderingFeatures.active = new SupportedRenderingFeatures() { reflectionProbeSupportFlags = SupportedRenderingFeatures.ReflectionProbeSupportFlags.Rotation, defaultMixedLightingMode = SupportedRenderingFeatures.LightmapMixedBakeMode.IndirectOnly, supportedMixedLightingModes = SupportedRenderingFeatures.LightmapMixedBakeMode.IndirectOnly | SupportedRenderingFeatures.LightmapMixedBakeMode.Shadowmask, supportedLightmapBakeTypes = LightmapBakeType.Baked | LightmapBakeType.Mixed | LightmapBakeType.Realtime, supportedLightmapsModes = LightmapsMode.NonDirectional | LightmapsMode.CombinedDirectional, rendererSupportsLightProbeProxyVolumes = true, rendererSupportsMotionVectors = true, rendererSupportsReceiveShadows = false, rendererSupportsReflectionProbes = true }; Lightmapping.SetDelegate(GlobalIlluminationUtils.hdLightsDelegate); #if UNITY_EDITOR SceneViewDrawMode.SetupDrawMode(); if (UnityEditor.PlayerSettings.colorSpace == ColorSpace.Gamma) { Debug.LogError("High Definition Render Pipeline doesn't support Gamma mode, change to Linear mode"); } #endif if (!IsSupportedPlatform()) { CoreUtils.DisplayUnsupportedAPIMessage(); return false; } #if !UNITY_SWITCH // VR is not supported currently in HD if (XRSettings.isDeviceActive) { CoreUtils.DisplayUnsupportedXRMessage(); return false; } #endif return true; } bool IsSupportedPlatform() { // Note: If you add new platform in this function, think about adding support when building the player to in HDRPCustomBuildProcessor.cs if (!SystemInfo.supportsComputeShaders) return false; if (SystemInfo.graphicsDeviceType == GraphicsDeviceType.Direct3D11 || SystemInfo.graphicsDeviceType == GraphicsDeviceType.Direct3D12 || SystemInfo.graphicsDeviceType == GraphicsDeviceType.PlayStation4 || SystemInfo.graphicsDeviceType == GraphicsDeviceType.XboxOne || SystemInfo.graphicsDeviceType == GraphicsDeviceType.XboxOneD3D12 || SystemInfo.graphicsDeviceType == GraphicsDeviceType.Vulkan || SystemInfo.graphicsDeviceType == (GraphicsDeviceType)22 /*GraphicsDeviceType.Switch*/) { return true; } if (SystemInfo.graphicsDeviceType == GraphicsDeviceType.Metal) { string os = SystemInfo.operatingSystem; // Metal support depends on OS version: // macOS 10.11.x doesn't have tessellation / earlydepthstencil support, early driver versions were buggy in general // macOS 10.12.x should usually work with AMD, but issues with Intel/Nvidia GPUs. Regardless of the GPU, there are issues with MTLCompilerService crashing with some shaders // macOS 10.13.x is expected to work, and if it's a driver/shader compiler issue, there's still hope on getting it fixed to next shipping OS patch release // // Has worked experimentally with iOS in the past, but it's not currently supported // if (os.StartsWith("Mac")) { // TODO: Expose in C# version number, for now assume "Mac OS X 10.10.4" format with version 10 at least int startIndex = os.LastIndexOf(" "); var parts = os.Substring(startIndex + 1).Split('.'); int a = Convert.ToInt32(parts[0]); int b = Convert.ToInt32(parts[1]); // In case in the future there's a need to disable specific patch releases // int c = Convert.ToInt32(parts[2]); if (a >= 10 && b >= 13) return true; } } return false; } void UnsetRenderingFeatures() { Shader.globalRenderPipeline = ""; SupportedRenderingFeatures.active = new SupportedRenderingFeatures(); Lightmapping.ResetDelegate(); } void InitializeDebugMaterials() { m_DebugViewMaterialGBuffer = CoreUtils.CreateEngineMaterial(m_Asset.renderPipelineResources.debugViewMaterialGBufferShader); m_DebugViewMaterialGBufferShadowMask = CoreUtils.CreateEngineMaterial(m_Asset.renderPipelineResources.debugViewMaterialGBufferShader); m_DebugViewMaterialGBufferShadowMask.EnableKeyword("SHADOWS_SHADOWMASK"); m_DebugDisplayLatlong = CoreUtils.CreateEngineMaterial(m_Asset.renderPipelineResources.debugDisplayLatlongShader); m_DebugFullScreen = CoreUtils.CreateEngineMaterial(m_Asset.renderPipelineResources.debugFullScreenShader); m_DebugColorPicker = CoreUtils.CreateEngineMaterial(m_Asset.renderPipelineResources.debugColorPickerShader); m_Blit = CoreUtils.CreateEngineMaterial(m_Asset.renderPipelineResources.blit); m_ErrorMaterial = CoreUtils.CreateEngineMaterial("Hidden/InternalErrorShader"); } void InitializeRenderStateBlocks() { m_DepthStateOpaque = new RenderStateBlock { depthState = new DepthState(true, CompareFunction.LessEqual), mask = RenderStateMask.Depth }; } public void OnSceneLoad() { // Recreate the textures which went NULL m_MaterialList.ForEach(material => material.Build(m_Asset)); } public override void Dispose() { UnsetRenderingFeatures(); if (!m_ValidAPI) return; base.Dispose(); m_DebugDisplaySettings.UnregisterDebug(); m_LightLoop.Cleanup(); // For debugging MousePositionDebug.instance.Cleanup(); DecalSystem.instance.Cleanup(); m_MaterialList.ForEach(material => material.Cleanup()); CoreUtils.Destroy(m_CopyStencilForNoLighting); CoreUtils.Destroy(m_CameraMotionVectorsMaterial); CoreUtils.Destroy(m_DebugViewMaterialGBuffer); CoreUtils.Destroy(m_DebugViewMaterialGBufferShadowMask); CoreUtils.Destroy(m_DebugDisplayLatlong); CoreUtils.Destroy(m_DebugFullScreen); CoreUtils.Destroy(m_DebugColorPicker); CoreUtils.Destroy(m_Blit); CoreUtils.Destroy(m_CopyDepth); CoreUtils.Destroy(m_ErrorMaterial); m_SSSBufferManager.Cleanup(); m_NormalBufferManager.Cleanup(); m_SkyManager.Cleanup(); m_VolumetricLightingSystem.Cleanup(); m_IBLFilterGGX.Cleanup(); HDCamera.ClearAll(); DestroyRenderTextures(); #if UNITY_EDITOR SceneViewDrawMode.ResetDrawMode(); FrameSettings.UnRegisterDebug("Scene View"); #endif } void Resize(HDCamera hdCamera) { bool resolutionChanged = (hdCamera.actualWidth != m_CurrentWidth) || (hdCamera.actualHeight != m_CurrentHeight); if (resolutionChanged || m_LightLoop.NeedResize()) { if (m_CurrentWidth > 0 && m_CurrentHeight > 0) m_LightLoop.ReleaseResolutionDependentBuffers(); m_LightLoop.AllocResolutionDependentBuffers((int)hdCamera.screenSize.x, (int)hdCamera.screenSize.y, hdCamera.frameSettings.enableStereo); } // update recorded window resolution m_CurrentWidth = hdCamera.actualWidth; m_CurrentHeight = hdCamera.actualHeight; } public void PushGlobalParams(HDCamera hdCamera, CommandBuffer cmd, DiffusionProfileSettings sssParameters) { using (new ProfilingSample(cmd, "Push Global Parameters", CustomSamplerId.PushGlobalParameters.GetSampler())) { // Set up UnityPerFrame CBuffer. m_SSSBufferManager.PushGlobalParams(hdCamera, cmd, sssParameters); m_DbufferManager.PushGlobalParams(hdCamera, cmd); m_VolumetricLightingSystem.PushGlobalParams(hdCamera, cmd, m_FrameCount); var ssRefraction = VolumeManager.instance.stack.GetComponent() ?? ScreenSpaceRefraction.@default; ssRefraction.PushShaderParameters(cmd); var ssReflection = VolumeManager.instance.stack.GetComponent() ?? ScreenSpaceReflection.@default; ssReflection.PushShaderParameters(cmd); // Set up UnityPerView CBuffer. hdCamera.SetupGlobalParams(cmd, m_Time, m_LastTime, m_FrameCount); if (hdCamera.frameSettings.enableStereo) hdCamera.SetupGlobalStereoParams(cmd); cmd.SetGlobalInt(HDShaderIDs._SSReflectionEnabled, hdCamera.frameSettings.enableSSR ? 1 : 0); PushGlobalRTHandle( cmd, hdCamera.GetPreviousFrameRT((int)HDCameraFrameHistoryType.DepthPyramid), HDShaderIDs._DepthPyramidTexture, HDShaderIDs._DepthPyramidSize, HDShaderIDs._DepthPyramidScale ); PushGlobalRTHandle( cmd, hdCamera.GetPreviousFrameRT((int)HDCameraFrameHistoryType.ColorPyramid), HDShaderIDs._ColorPyramidTexture, HDShaderIDs._ColorPyramidSize, HDShaderIDs._ColorPyramidScale ); PushGlobalRTHandle( cmd, m_VelocityBuffer, HDShaderIDs._CameraMotionVectorsTexture, HDShaderIDs._CameraMotionVectorsSize, HDShaderIDs._CameraMotionVectorsScale ); cmd.SetGlobalBuffer(HDShaderIDs._DebugScreenSpaceTracingData, m_DebugScreenSpaceTracingData); } } bool IsConsolePlatform() { return SystemInfo.graphicsDeviceType == GraphicsDeviceType.PlayStation4 || SystemInfo.graphicsDeviceType == GraphicsDeviceType.XboxOne || SystemInfo.graphicsDeviceType == GraphicsDeviceType.XboxOneD3D12; } bool NeedDepthBufferCopy() { // For now we consider all console to be able to read from a bound depth buffer. return !IsConsolePlatform(); } bool NeedStencilBufferCopy() { // Currently, Unity does not offer a way to bind the stencil buffer as a texture in a compute shader. // Therefore, it's manually copied using a pixel shader. return m_LightLoop.GetFeatureVariantsEnabled(); } RTHandleSystem.RTHandle GetDepthTexture() { return NeedDepthBufferCopy() ? m_CameraDepthBufferCopy : m_CameraDepthStencilBuffer; } void CopyDepthBufferIfNeeded(CommandBuffer cmd) { using (new ProfilingSample(cmd, NeedDepthBufferCopy() ? "Copy DepthBuffer" : "Set DepthBuffer", CustomSamplerId.CopySetDepthBuffer.GetSampler())) { if (NeedDepthBufferCopy()) { using (new ProfilingSample(cmd, "Copy depth-stencil buffer", CustomSamplerId.CopyDepthStencilbuffer.GetSampler())) { cmd.CopyTexture(m_CameraDepthStencilBuffer, m_CameraDepthBufferCopy); } } } } public void UpdateShadowSettings(HDCamera hdCamera) { var shadowSettings = VolumeManager.instance.stack.GetComponent(); m_ShadowSettings.maxShadowDistance = shadowSettings.maxShadowDistance; //m_ShadowSettings.directionalLightNearPlaneOffset = commonSettings.shadowNearPlaneOffset; m_ShadowSettings.enabled = hdCamera.frameSettings.enableShadow; } public void ConfigureForShadowMask(bool enableBakeShadowMask, CommandBuffer cmd) { // Globally enable (for GBuffer shader and forward lit (opaque and transparent) the keyword SHADOWS_SHADOWMASK CoreUtils.SetKeyword(cmd, "SHADOWS_SHADOWMASK", enableBakeShadowMask); // Configure material to use depends on shadow mask option m_currentRendererConfigurationBakedLighting = enableBakeShadowMask ? HDUtils.k_RendererConfigurationBakedLightingWithShadowMask : HDUtils.k_RendererConfigurationBakedLighting; m_currentDebugViewMaterialGBuffer = enableBakeShadowMask ? m_DebugViewMaterialGBufferShadowMask : m_DebugViewMaterialGBuffer; } CullResults m_CullResults; ReflectionProbeCullResults m_ReflectionProbeCullResults; public override void Render(ScriptableRenderContext renderContext, Camera[] cameras) { if (!m_ValidAPI) return; base.Render(renderContext, cameras); RenderPipeline.BeginFrameRendering(cameras); { // SRP.Render() can be called several times per frame. // Also, most Time variables do not consistently update in the Scene View. // This makes reliable detection of the start of the new frame VERY hard. // One of the exceptions is 'Time.realtimeSinceStartup'. // Therefore, outside of the Play Mode we update the time at 60 fps, // and in the Play Mode we rely on 'Time.frameCount'. float t = Time.realtimeSinceStartup; uint c = (uint)Time.frameCount; bool newFrame; if (Application.isPlaying) { newFrame = m_FrameCount != c; m_FrameCount = c; } else { newFrame = (t - m_Time) > 0.0166f; if (newFrame) m_FrameCount++; } if (newFrame) { HDCamera.CleanUnused(); // Make sure both are never 0. m_LastTime = (m_Time > 0) ? m_Time : t; m_Time = t; } } // TODO: Render only visible probes var isReflection = cameras.Any(c => c.cameraType == CameraType.Reflection); if (!isReflection) ReflectionSystem.RenderAllRealtimeProbes(ReflectionProbeType.PlanarReflection); // We first update the state of asset frame settings as they can be use by various camera // but we keep the dirty state to correctly reset other camera that use RenderingPath.Default. bool assetFrameSettingsIsDirty = m_Asset.frameSettingsIsDirty; m_Asset.UpdateDirtyFrameSettings(); foreach (var camera in cameras) { if (camera == null) continue; RenderPipeline.BeginCameraRendering(camera); // First, get aggregate of frame settings base on global settings, camera frame settings and debug settings // Note: the SceneView camera will never have additionalCameraData var additionalCameraData = camera.GetComponent(); // Init effective frame settings of each camera // Each camera have its own debug frame settings control from the debug windows // debug frame settings can't be aggregate with frame settings (i.e we can't aggregate forward only control for example) // so debug settings (when use) are the effective frame settings // To be able to have this behavior we init effective frame settings with serialized frame settings and copy // debug settings change on top of it. Each time frame settings are change in the editor, we reset all debug settings // to stay in sync. The loop below allow to update all frame settings correctly and is required because // camera can rely on default frame settings from the HDRendeRPipelineAsset FrameSettings srcFrameSettings; if (additionalCameraData) { additionalCameraData.UpdateDirtyFrameSettings(assetFrameSettingsIsDirty, m_Asset.GetFrameSettings()); srcFrameSettings = additionalCameraData.GetFrameSettings(); } else { srcFrameSettings = m_Asset.GetFrameSettings(); } FrameSettings currentFrameSettings = new FrameSettings(); // Get the effective frame settings for this camera taking into account the global setting and camera type FrameSettings.InitializeFrameSettings(camera, m_Asset.GetRenderPipelineSettings(), srcFrameSettings, ref currentFrameSettings); // This is the main command buffer used for the frame. var cmd = CommandBufferPool.Get(""); // Specific pass to simply display the content of the camera buffer if users have fill it themselves (like video player) if (additionalCameraData && additionalCameraData.renderingPath == HDAdditionalCameraData.RenderingPath.FullscreenPassthrough) { renderContext.ExecuteCommandBuffer(cmd); CommandBufferPool.Release(cmd); renderContext.Submit(); continue; } // Don't render reflection in Preview, it prevent them to display if (camera.cameraType != CameraType.Reflection && camera.cameraType != CameraType.Preview // Planar probes rendering is not currently supported for orthographic camera // Avoid rendering to prevent error log spamming && !camera.orthographic) // TODO: Render only visible probes ReflectionSystem.RenderAllRealtimeViewerDependentProbesFor(ReflectionProbeType.PlanarReflection, camera); // Init material if needed // TODO: this should be move outside of the camera loop but we have no command buffer, ask details to Tim or Julien to do this if (!m_IBLFilterGGX.IsInitialized()) m_IBLFilterGGX.Initialize(cmd); foreach (var material in m_MaterialList) material.RenderInit(cmd); using (new ProfilingSample(cmd, "HDRenderPipeline::Render", CustomSamplerId.HDRenderPipelineRender.GetSampler())) { // Do anything we need to do upon a new frame. m_LightLoop.NewFrame(currentFrameSettings); // If we render a reflection view or a preview we should not display any debug information // This need to be call before ApplyDebugDisplaySettings() if (camera.cameraType == CameraType.Reflection || camera.cameraType == CameraType.Preview) { // Neutral allow to disable all debug settings m_CurrentDebugDisplaySettings = s_NeutralDebugDisplaySettings; } else { m_CurrentDebugDisplaySettings = m_DebugDisplaySettings; using (new ProfilingSample(cmd, "Volume Update", CustomSamplerId.VolumeUpdate.GetSampler())) { LayerMask layerMask = -1; if (additionalCameraData != null) { layerMask = additionalCameraData.volumeLayerMask; } else { // Temporary hack: // For scene view, by default, we use the "main" camera volume layer mask if it exists // Otherwise we just remove the lighting override layers in the current sky to avoid conflicts // This is arbitrary and should be editable in the scene view somehow. if (camera.cameraType == CameraType.SceneView) { var mainCamera = Camera.main; bool needFallback = true; if (mainCamera != null) { var mainCamAdditionalData = mainCamera.GetComponent(); if (mainCamAdditionalData != null) { layerMask = mainCamAdditionalData.volumeLayerMask; needFallback = false; } } if (needFallback) { // If the override layer is "Everything", we fall-back to "Everything" for the current layer mask to avoid issues by having no current layer // In practice we should never have "Everything" as an override mask as it does not make sense (a warning is issued in the UI) if (m_Asset.renderPipelineSettings.lightLoopSettings.skyLightingOverrideLayerMask == -1) layerMask = -1; else layerMask = (-1 & ~m_Asset.renderPipelineSettings.lightLoopSettings.skyLightingOverrideLayerMask); } } } VolumeManager.instance.Update(camera.transform, layerMask); } } var postProcessLayer = camera.GetComponent(); // Disable post process if we enable debug mode or if the post process layer is disabled if (m_CurrentDebugDisplaySettings.IsDebugDisplayRemovePostprocess() || !CoreUtils.IsPostProcessingActive(postProcessLayer)) { currentFrameSettings.enablePostprocess = false; } var hdCamera = HDCamera.Get(camera); if (hdCamera == null) { hdCamera = HDCamera.Create(camera, m_VolumetricLightingSystem); } // From this point, we should only use frame settings from the camera hdCamera.Update(currentFrameSettings, postProcessLayer, m_VolumetricLightingSystem); Resize(hdCamera); ApplyDebugDisplaySettings(hdCamera, cmd); UpdateShadowSettings(hdCamera); m_SkyManager.UpdateCurrentSkySettings(hdCamera); ScriptableCullingParameters cullingParams; if (!CullResults.GetCullingParameters(camera, hdCamera.frameSettings.enableStereo, out cullingParams)) { renderContext.Submit(); continue; } m_LightLoop.UpdateCullingParameters(ref cullingParams); hdCamera.UpdateStereoDependentState(ref cullingParams); #if UNITY_EDITOR // emit scene view UI if (camera.cameraType == CameraType.SceneView) { ScriptableRenderContext.EmitWorldGeometryForSceneView(camera); } #endif if (hdCamera.frameSettings.enableDBuffer) { // decal system needs to be updated with current camera, it needs it to set up culling and light list generation parameters DecalSystem.instance.CurrentCamera = camera; DecalSystem.instance.BeginCull(); } ReflectionSystem.PrepareCull(camera, m_ReflectionProbeCullResults); using (new ProfilingSample(cmd, "CullResults.Cull", CustomSamplerId.CullResultsCull.GetSampler())) { CullResults.Cull(ref cullingParams, renderContext, ref m_CullResults); } m_ReflectionProbeCullResults.Cull(); m_DbufferManager.EnableDBUffer = false; using (new ProfilingSample(cmd, "DBufferPrepareDrawData", CustomSamplerId.DBufferPrepareDrawData.GetSampler())) { if (hdCamera.frameSettings.enableDBuffer) { DecalSystem.instance.EndCull(); m_DbufferManager.EnableDBUffer = true; // mesh decals are renderers managed by c++ runtime and we have no way to query if any are visible, so set to true DecalSystem.instance.UpdateCachedMaterialData(); // textures, alpha or fade distances could've changed DecalSystem.instance.CreateDrawData(); // prepare data is separate from draw DecalSystem.instance.UpdateTextureAtlas(cmd); // as this is only used for transparent pass, would've been nice not to have to do this if no transparent renderers are visible, needs to happen after CreateDrawData } } renderContext.SetupCameraProperties(camera, hdCamera.frameSettings.enableStereo); PushGlobalParams(hdCamera, cmd, diffusionProfileSettings); // TODO: Find a correct place to bind these material textures // We have to bind the material specific global parameters in this mode m_MaterialList.ForEach(material => material.Bind()); // Frustum cull density volumes on the CPU. Can be performed as soon as the camera is set up. DensityVolumeList densityVolumes = m_VolumetricLightingSystem.PrepareVisibleDensityVolumeList(hdCamera, cmd, m_Time); // Note: Legacy Unity behave like this for ShadowMask // When you select ShadowMask in Lighting panel it recompile shaders on the fly with the SHADOW_MASK keyword. // However there is no C# function that we can query to know what mode have been select in Lighting Panel and it will be wrong anyway. Lighting Panel setup what will be the next bake mode. But until light is bake, it is wrong. // Currently to know if you need shadow mask you need to go through all visible lights (of CullResult), check the LightBakingOutput struct and look at lightmapBakeType/mixedLightingMode. If one light have shadow mask bake mode, then you need shadow mask features (i.e extra Gbuffer). // It mean that when we build a standalone player, if we detect a light with bake shadow mask, we generate all shader variant (with and without shadow mask) and at runtime, when a bake shadow mask light is visible, we dynamically allocate an extra GBuffer and switch the shader. // So the first thing to do is to go through all the light: PrepareLightsForGPU bool enableBakeShadowMask; using (new ProfilingSample(cmd, "TP_PrepareLightsForGPU", CustomSamplerId.TPPrepareLightsForGPU.GetSampler())) { enableBakeShadowMask = m_LightLoop.PrepareLightsForGPU(cmd, hdCamera, m_ShadowSettings, m_CullResults, m_ReflectionProbeCullResults, densityVolumes); } ConfigureForShadowMask(enableBakeShadowMask, cmd); StartStereoRendering(renderContext, hdCamera); ClearBuffers(hdCamera, cmd); // TODO: Add stereo occlusion mask RenderDepthPrepass(m_CullResults, hdCamera, renderContext, cmd, m_DbufferManager.EnableDBUffer); // This will bind the depth buffer if needed for DBuffer) RenderDBuffer(hdCamera, cmd, renderContext, m_CullResults); RenderGBuffer(m_CullResults, hdCamera, enableBakeShadowMask, renderContext, cmd); // We can now bind the normal buffer to be use by any effect m_NormalBufferManager.BindNormalBuffers(cmd); // In both forward and deferred, everything opaque should have been rendered at this point so we can safely copy the depth buffer for later processing. CopyDepthBufferIfNeeded(cmd); RenderDepthPyramid(hdCamera, cmd, renderContext, FullScreenDebugMode.DepthPyramid); // TODO: In the future we will render object velocity at the same time as depth prepass (we need C++ modification for this) // Once the C++ change is here we will first render all object without motion vector then motion vector object // We can't currently render object velocity after depth prepass because if there is no depth prepass we can have motion vector write that should have been rejected RenderObjectsVelocity(m_CullResults, hdCamera, renderContext, cmd); RenderCameraVelocity(m_CullResults, hdCamera, renderContext, cmd); // Depth texture is now ready, bind it (Depth buffer could have been bind before if DBuffer is enable) cmd.SetGlobalTexture(HDShaderIDs._CameraDepthTexture, GetDepthTexture()); // Caution: We require sun light here as some skies use the sun light to render, it means that UpdateSkyEnvironment must be called after PrepareLightsForGPU. // TODO: Try to arrange code so we can trigger this call earlier and use async compute here to run sky convolution during other passes (once we move convolution shader to compute). UpdateSkyEnvironment(hdCamera, cmd); StopStereoRendering(renderContext, hdCamera); if (m_CurrentDebugDisplaySettings.IsDebugMaterialDisplayEnabled()) { RenderDebugViewMaterial(m_CullResults, hdCamera, renderContext, cmd); PushColorPickerDebugTexture(cmd, m_CameraColorBuffer, hdCamera); } else { StartStereoRendering(renderContext, hdCamera); using (new ProfilingSample(cmd, "Render SSAO", CustomSamplerId.RenderSSAO.GetSampler())) { // TODO: Everything here (SSAO, Shadow, Build light list, deferred shadow, material and light classification can be parallelize with Async compute) RenderSSAO(cmd, hdCamera, renderContext, postProcessLayer); } // Clear and copy the stencil texture needs to be moved to before we invoke the async light list build, // otherwise the async compute queue can end up using that texture before the graphics queue is done with it. // TODO: Move this code inside LightLoop if (m_LightLoop.GetFeatureVariantsEnabled()) { // For material classification we use compute shader and so can't read into the stencil, so prepare it. using (new ProfilingSample(cmd, "Clear and copy stencil texture", CustomSamplerId.ClearAndCopyStencilTexture.GetSampler())) { HDUtils.SetRenderTarget(cmd, hdCamera, m_CameraStencilBufferCopy, ClearFlag.Color, CoreUtils.clearColorAllBlack); // In the material classification shader we will simply test is we are no lighting // Use ShaderPassID 1 => "Pass 1 - Write 1 if value different from stencilRef to output" HDUtils.DrawFullScreen(cmd, hdCamera, m_CopyStencilForNoLighting, m_CameraStencilBufferCopy, m_CameraDepthStencilBuffer, null, 1); } } StopStereoRendering(renderContext, hdCamera); GPUFence buildGPULightListsCompleteFence = new GPUFence(); if (hdCamera.frameSettings.enableAsyncCompute) { GPUFence startFence = cmd.CreateGPUFence(); renderContext.ExecuteCommandBuffer(cmd); cmd.Clear(); buildGPULightListsCompleteFence = m_LightLoop.BuildGPULightListsAsyncBegin(hdCamera, renderContext, m_CameraDepthStencilBuffer, m_CameraStencilBufferCopy, startFence, m_SkyManager.IsLightingSkyValid()); } using (new ProfilingSample(cmd, "Render shadows", CustomSamplerId.RenderShadows.GetSampler())) { // This call overwrites camera properties passed to the shader system. m_LightLoop.RenderShadows(renderContext, cmd, m_CullResults); // Overwrite camera properties set during the shadow pass with the original camera properties. renderContext.SetupCameraProperties(camera, hdCamera.frameSettings.enableStereo); hdCamera.SetupGlobalParams(cmd, m_Time, m_LastTime, m_FrameCount); if (hdCamera.frameSettings.enableStereo) hdCamera.SetupGlobalStereoParams(cmd); } using (new ProfilingSample(cmd, "Deferred directional shadows", CustomSamplerId.RenderDeferredDirectionalShadow.GetSampler())) { // When debug is enabled we need to clear otherwise we may see non-shadows areas with stale values. if (m_CurrentDebugDisplaySettings.fullScreenDebugMode == FullScreenDebugMode.DeferredShadows) { HDUtils.SetRenderTarget(cmd, hdCamera, m_DeferredShadowBuffer, ClearFlag.Color, CoreUtils.clearColorAllBlack); } m_LightLoop.RenderDeferredDirectionalShadow(hdCamera, m_DeferredShadowBuffer, GetDepthTexture(), cmd); PushFullScreenDebugTexture(hdCamera, cmd, m_DeferredShadowBuffer, FullScreenDebugMode.DeferredShadows); } if (hdCamera.frameSettings.enableAsyncCompute) { m_LightLoop.BuildGPULightListAsyncEnd(hdCamera, cmd, buildGPULightListsCompleteFence); } else { using (new ProfilingSample(cmd, "Build Light list", CustomSamplerId.BuildLightList.GetSampler())) { m_LightLoop.BuildGPULightLists(hdCamera, cmd, m_CameraDepthStencilBuffer, m_CameraStencilBufferCopy, m_SkyManager.IsLightingSkyValid()); } } { // Set fog parameters for volumetric lighting. var visualEnv = VolumeManager.instance.stack.GetComponent(); visualEnv.PushFogShaderParameters(hdCamera, cmd); } // Perform the voxelization step which fills the density 3D texture. // Requires the clustered lighting data structure to be built, and can run async. m_VolumetricLightingSystem.VolumeVoxelizationPass(hdCamera, cmd, m_FrameCount, densityVolumes); // Render the volumetric lighting. // The pass requires the volume properties, the light list and the shadows, and can run async. m_VolumetricLightingSystem.VolumetricLightingPass(hdCamera, cmd, m_FrameCount); RenderDeferredLighting(hdCamera, cmd); // Might float this higher if we enable stereo w/ deferred StartStereoRendering(renderContext, hdCamera); RenderForward(m_CullResults, hdCamera, renderContext, cmd, ForwardPass.Opaque); // SSS pass here handle both SSS material from deferred and forward m_SSSBufferManager.SubsurfaceScatteringPass(hdCamera, cmd, diffusionProfileSettings, m_CameraColorBuffer, m_CameraSssDiffuseLightingBuffer, m_CameraDepthStencilBuffer, GetDepthTexture()); RenderSky(hdCamera, cmd); // Render pre refraction objects RenderForward(m_CullResults, hdCamera, renderContext, cmd, ForwardPass.PreRefraction); RenderColorPyramid(hdCamera, cmd, renderContext, true); // Render all type of transparent forward (unlit, lit, complex (hair...)) to keep the sorting between transparent objects. RenderForward(m_CullResults, hdCamera, renderContext, cmd, ForwardPass.Transparent); // Render All forward error RenderForwardError(m_CullResults, hdCamera, renderContext, cmd); // Fill depth buffer to reduce artifact for transparent object during postprocess RenderTransparentDepthPostpass(m_CullResults, hdCamera, renderContext, cmd, ForwardPass.Transparent); RenderColorPyramid(hdCamera, cmd, renderContext, false); AccumulateDistortion(m_CullResults, hdCamera, renderContext, cmd); RenderDistortion(hdCamera, cmd, m_Asset.renderPipelineResources); StopStereoRendering(renderContext, hdCamera); PushFullScreenDebugTexture(hdCamera, cmd, m_CameraColorBuffer, FullScreenDebugMode.NanTracker); PushColorPickerDebugTexture(hdCamera, cmd, m_CameraColorBuffer); // The final pass either postprocess of Blit will flip the screen (as it is reverse by default due to Unity openGL legacy) // Postprocess system (that doesn't use cmd.Blit) handle it with configuration (and do not flip in SceneView) or it is automatically done in Blit StartStereoRendering(renderContext, hdCamera); // Final blit if (hdCamera.frameSettings.enablePostprocess) { RenderPostProcess(hdCamera, cmd, postProcessLayer); } else { using (new ProfilingSample(cmd, "Blit to final RT", CustomSamplerId.BlitToFinalRT.GetSampler())) { // This Blit will flip the screen on anything other than openGL HDUtils.BlitCameraTexture(cmd, hdCamera, m_CameraColorBuffer, BuiltinRenderTextureType.CameraTarget); } } StopStereoRendering(renderContext, hdCamera); // Pushes to XR headset and/or display mirror if (hdCamera.frameSettings.enableStereo) renderContext.StereoEndRender(hdCamera.camera); } #if UNITY_EDITOR // During rendering we use our own depth buffer instead of the one provided by the scene view (because we need to be able to control its life cycle) // In order for scene view gizmos/icons etc to be depth test correctly, we need to copy the content of our own depth buffer into the scene view depth buffer. // On subtlety here is that our buffer can be bigger than the camera one so we need to copy only the corresponding portion // (it's handled automatically by the copy shader because it uses a load in pixel coordinates based on the target). // This copy will also have the effect of re-binding this depth buffer correctly for subsequent editor rendering. // NOTE: This needs to be done before the call to RenderDebug because debug overlays need to update the depth for the scene view as well. // Make sure RenderDebug does not change the current Render Target if (camera.cameraType == CameraType.SceneView) { using (new ProfilingSample(cmd, "Copy Depth For SceneView", CustomSamplerId.CopyDepthForSceneView.GetSampler())) { m_CopyDepth.SetTexture(HDShaderIDs._InputDepth, m_CameraDepthStencilBuffer); cmd.Blit(null, BuiltinRenderTextureType.CameraTarget, m_CopyDepth); } } #endif PushFullScreenDebugTexture(hdCamera, cmd, m_CameraColorBuffer, FullScreenDebugMode.ScreenSpaceTracing); // Caution: RenderDebug need to take into account that we have flip the screen (so anything capture before the flip will be flipped) RenderDebug(hdCamera, cmd); #if UNITY_EDITOR // We need to make sure the viewport is correctly set for the editor rendering. It might have been changed by debug overlay rendering just before. cmd.SetViewport(new Rect(0.0f, 0.0f, hdCamera.actualWidth, hdCamera.actualHeight)); #endif } // Caution: ExecuteCommandBuffer must be outside of the profiling bracket renderContext.ExecuteCommandBuffer(cmd); CommandBufferPool.Release(cmd); renderContext.Submit(); if (m_CurrentDebugDisplaySettings.fullScreenDebugMode == FullScreenDebugMode.ScreenSpaceTracing) { m_DebugScreenSpaceTracingData.GetData(m_DebugScreenSpaceTracingDataArray); var data = m_DebugScreenSpaceTracingDataArray[0]; m_CurrentDebugDisplaySettings.screenSpaceTracingDebugData = data; // Assign -1 in tracing model to notifiy we took the data. // When debugging in forward, we want only the first time the pixel is drawn data.tracingModel = (Lit.ProjectionModel)(-1); m_DebugScreenSpaceTracingDataArray[0] = data; m_DebugScreenSpaceTracingData.SetData(m_DebugScreenSpaceTracingDataArray); } } // For each camera } void RenderOpaqueRenderList(CullResults cull, HDCamera hdCamera, ScriptableRenderContext renderContext, CommandBuffer cmd, ShaderPassName passName, RendererConfiguration rendererConfiguration = 0, RenderQueueRange? inRenderQueueRange = null, RenderStateBlock? stateBlock = null, Material overrideMaterial = null) { m_SinglePassName[0] = passName; RenderOpaqueRenderList(cull, hdCamera, renderContext, cmd, m_SinglePassName, rendererConfiguration, inRenderQueueRange, stateBlock, overrideMaterial); } void RenderOpaqueRenderList(CullResults cull, HDCamera hdCamera, ScriptableRenderContext renderContext, CommandBuffer cmd, ShaderPassName[] passNames, RendererConfiguration rendererConfiguration = 0, RenderQueueRange? inRenderQueueRange = null, RenderStateBlock? stateBlock = null, Material overrideMaterial = null) { if (!hdCamera.frameSettings.enableOpaqueObjects) return; // This is done here because DrawRenderers API lives outside command buffers so we need to make call this before doing any DrawRenders renderContext.ExecuteCommandBuffer(cmd); cmd.Clear(); var drawSettings = new DrawRendererSettings(hdCamera.camera, HDShaderPassNames.s_EmptyName) { rendererConfiguration = rendererConfiguration, sorting = { flags = SortFlags.CommonOpaque } }; for (int i = 0; i < passNames.Length; ++i) { drawSettings.SetShaderPassName(i, passNames[i]); } if (overrideMaterial != null) drawSettings.SetOverrideMaterial(overrideMaterial, 0); var filterSettings = new FilterRenderersSettings(true) { renderQueueRange = inRenderQueueRange == null ? HDRenderQueue.k_RenderQueue_AllOpaque : inRenderQueueRange.Value }; if (stateBlock == null) renderContext.DrawRenderers(cull.visibleRenderers, ref drawSettings, filterSettings); else renderContext.DrawRenderers(cull.visibleRenderers, ref drawSettings, filterSettings, stateBlock.Value); } void RenderTransparentRenderList(CullResults cull, HDCamera hdCamera, ScriptableRenderContext renderContext, CommandBuffer cmd, ShaderPassName passName, RendererConfiguration rendererConfiguration = 0, RenderQueueRange? inRenderQueueRange = null, RenderStateBlock? stateBlock = null, Material overrideMaterial = null) { m_SinglePassName[0] = passName; RenderTransparentRenderList(cull, hdCamera, renderContext, cmd, m_SinglePassName, rendererConfiguration, inRenderQueueRange, stateBlock, overrideMaterial); } void RenderTransparentRenderList(CullResults cull, HDCamera hdCamera, ScriptableRenderContext renderContext, CommandBuffer cmd, ShaderPassName[] passNames, RendererConfiguration rendererConfiguration = 0, RenderQueueRange? inRenderQueueRange = null, RenderStateBlock? stateBlock = null, Material overrideMaterial = null ) { if (!hdCamera.frameSettings.enableTransparentObjects) return; // This is done here because DrawRenderers API lives outside command buffers so we need to make call this before doing any DrawRenders renderContext.ExecuteCommandBuffer(cmd); cmd.Clear(); var drawSettings = new DrawRendererSettings(hdCamera.camera, HDShaderPassNames.s_EmptyName) { rendererConfiguration = rendererConfiguration, sorting = { flags = SortFlags.CommonTransparent } }; for (int i = 0; i < passNames.Length; ++i) { drawSettings.SetShaderPassName(i, passNames[i]); } if (overrideMaterial != null) drawSettings.SetOverrideMaterial(overrideMaterial, 0); var filterSettings = new FilterRenderersSettings(true) { renderQueueRange = inRenderQueueRange == null ? HDRenderQueue.k_RenderQueue_AllTransparent : inRenderQueueRange.Value }; if (stateBlock == null) renderContext.DrawRenderers(cull.visibleRenderers, ref drawSettings, filterSettings); else renderContext.DrawRenderers(cull.visibleRenderers, ref drawSettings, filterSettings, stateBlock.Value); } void AccumulateDistortion(CullResults cullResults, HDCamera hdCamera, ScriptableRenderContext renderContext, CommandBuffer cmd) { if (!hdCamera.frameSettings.enableDistortion) return; using (new ProfilingSample(cmd, "Distortion", CustomSamplerId.Distortion.GetSampler())) { HDUtils.SetRenderTarget(cmd, hdCamera, m_DistortionBuffer, m_CameraDepthStencilBuffer, ClearFlag.Color, Color.clear); // Only transparent object can render distortion vectors RenderTransparentRenderList(cullResults, hdCamera, renderContext, cmd, HDShaderPassNames.s_DistortionVectorsName); } } void RenderDistortion(HDCamera hdCamera, CommandBuffer cmd, RenderPipelineResources resources) { if (!hdCamera.frameSettings.enableDistortion) return; using (new ProfilingSample(cmd, "ApplyDistortion", CustomSamplerId.ApplyDistortion.GetSampler())) { var colorPyramidRT = hdCamera.GetPreviousFrameRT((int)HDCameraFrameHistoryType.ColorPyramid); var pyramidScale = m_BufferPyramid.GetPyramidToScreenScale(hdCamera, colorPyramidRT); // Need to account for the fact that the gaussian pyramid is actually rendered inside the camera viewport in a square texture so we mutiply by the PyramidToScreen scale var size = new Vector4(hdCamera.screenSize.x, hdCamera.screenSize.y, pyramidScale.x / hdCamera.screenSize.x, pyramidScale.y / hdCamera.screenSize.y); uint x, y, z; m_applyDistortionCS.GetKernelThreadGroupSizes(m_applyDistortionKernel, out x, out y, out z); cmd.SetComputeTextureParam(m_applyDistortionCS, m_applyDistortionKernel, HDShaderIDs._DistortionTexture, m_DistortionBuffer); cmd.SetComputeTextureParam(m_applyDistortionCS, m_applyDistortionKernel, HDShaderIDs._ColorPyramidTexture, colorPyramidRT); cmd.SetComputeTextureParam(m_applyDistortionCS, m_applyDistortionKernel, HDShaderIDs._CameraColorTexture, m_CameraColorBuffer); cmd.SetComputeVectorParam(m_applyDistortionCS, HDShaderIDs._Size, size); cmd.DispatchCompute(m_applyDistortionCS, m_applyDistortionKernel, Mathf.CeilToInt(size.x / x), Mathf.CeilToInt(size.y / y), 1); } } // RenderDepthPrepass render both opaque and opaque alpha tested based on engine configuration. // Forward only renderer: We always render everything // Deferred renderer: We always render depth prepass for alpha tested (optimization), other object are render based on engine configuration. // Forward opaque with deferred renderer (DepthForwardOnly pass): We always render everything void RenderDepthPrepass(CullResults cull, HDCamera hdCamera, ScriptableRenderContext renderContext, CommandBuffer cmd, bool forcePrepass) { // In case of deferred renderer, we can have forward opaque material. These materials need to be render in the depth buffer to correctly build the light list. // And they will tag the stencil to not be lit during the deferred lighting pass. // Guidelines: In deferred by default there is no opaque in forward. However it is possible to force an opaque material to render in forward // by using the pass "ForwardOnly". In this case the .shader should not have "Forward" but only a "ForwardOnly" pass. // It must also have a "DepthForwardOnly" and no "DepthOnly" pass as forward material (either deferred or forward only rendering) have always a depth pass. // If a forward material have no depth prepass, then lighting can be incorrect (deferred sahdowing, SSAO), this may be acceptable depends on usage // Whatever the configuration we always render first the opaque object as opaque alpha tested are more costly to render and could be reject by early-z // (but not Hi-z as it is disable with clip instruction). This is handled automatically with the RenderQueue value (OpaqueAlphaTested have a different value and thus are sorted after Opaque) // Forward material always output normal buffer (unless they don't participate to shading) // Deferred material never output normal buffer if (hdCamera.frameSettings.enableForwardRenderingOnly) { using (new ProfilingSample(cmd, "Depth Prepass (forward)", CustomSamplerId.DepthPrepass.GetSampler())) { cmd.EnableShaderKeyword("OUTPUT_NORMAL_BUFFER"); HDUtils.SetRenderTarget(cmd, hdCamera, m_NormalBufferManager.GetBuffersRTI(), m_CameraDepthStencilBuffer); // Full forward: Output normal buffer for both forward and forwardOnly RenderOpaqueRenderList(cull, hdCamera, renderContext, cmd, m_DepthOnlyAndDepthForwardOnlyPassNames, 0, HDRenderQueue.k_RenderQueue_AllOpaque); } } else if (hdCamera.frameSettings.enableDepthPrepassWithDeferredRendering || forcePrepass) { using (new ProfilingSample(cmd, "Depth Prepass (deferred)", CustomSamplerId.DepthPrepass.GetSampler())) { cmd.DisableShaderKeyword("OUTPUT_NORMAL_BUFFER"); // Note: This only disable the output of normal buffer for Lit shader, not the other shader that don't use multicompile HDUtils.SetRenderTarget(cmd, hdCamera, m_NormalBufferManager.GetBuffersRTI(), m_CameraDepthStencilBuffer); // First deferred material RenderOpaqueRenderList(cull, hdCamera, renderContext, cmd, m_DepthOnlyPassNames, 0, HDRenderQueue.k_RenderQueue_AllOpaque); // Then forward only material that output normal buffer RenderOpaqueRenderList(cull, hdCamera, renderContext, cmd, m_DepthForwardOnlyPassNames, 0, HDRenderQueue.k_RenderQueue_AllOpaque); } } else // Deferred with partial depth prepass { using (new ProfilingSample(cmd, "Depth Prepass (deferred incomplete)", CustomSamplerId.DepthPrepass.GetSampler())) { cmd.DisableShaderKeyword("OUTPUT_NORMAL_BUFFER"); HDUtils.SetRenderTarget(cmd, hdCamera, m_CameraDepthStencilBuffer); // First deferred alpha tested materials. Alpha tested object have always a prepass even if enableDepthPrepassWithDeferredRendering is disabled var renderQueueRange = new RenderQueueRange { min = (int)RenderQueue.AlphaTest, max = (int)RenderQueue.GeometryLast - 1 }; RenderOpaqueRenderList(cull, hdCamera, renderContext, cmd, m_DepthOnlyPassNames, 0, renderQueueRange); HDUtils.SetRenderTarget(cmd, hdCamera, m_NormalBufferManager.GetBuffersRTI(), m_CameraDepthStencilBuffer); // Then forward only material that output normal buffer RenderOpaqueRenderList(cull, hdCamera, renderContext, cmd, m_DepthForwardOnlyPassNames, 0, HDRenderQueue.k_RenderQueue_AllOpaque); } } if (hdCamera.frameSettings.enableTransparentPrepass) { // Render transparent depth prepass after opaque one using (new ProfilingSample(cmd, "Transparent Depth Prepass", CustomSamplerId.TransparentDepthPrepass.GetSampler())) { RenderTransparentRenderList(cull, hdCamera, renderContext, cmd, m_TransparentDepthPrepassNames); } } } // RenderGBuffer do the gbuffer pass. This is solely call with deferred. If we use a depth prepass, then the depth prepass will perform the alpha testing for opaque apha tested and we don't need to do it anymore // during Gbuffer pass. This is handled in the shader and the depth test (equal and no depth write) is done here. void RenderGBuffer(CullResults cull, HDCamera hdCamera, bool enableShadowMask, ScriptableRenderContext renderContext, CommandBuffer cmd) { if (hdCamera.frameSettings.enableForwardRenderingOnly) return; using (new ProfilingSample(cmd, m_CurrentDebugDisplaySettings.IsDebugDisplayEnabled() ? "GBuffer Debug" : "GBuffer", CustomSamplerId.GBuffer.GetSampler())) { // setup GBuffer for rendering HDUtils.SetRenderTarget(cmd, hdCamera, m_GbufferManager.GetBuffersRTI(enableShadowMask), m_CameraDepthStencilBuffer); RenderOpaqueRenderList(cull, hdCamera, renderContext, cmd, HDShaderPassNames.s_GBufferName, m_currentRendererConfigurationBakedLighting, HDRenderQueue.k_RenderQueue_AllOpaque); m_GbufferManager.BindBufferAsTextures(cmd); } } void RenderDBuffer(HDCamera hdCamera, CommandBuffer cmd, ScriptableRenderContext renderContext, CullResults cullResults) { if (!hdCamera.frameSettings.enableDBuffer) return; using (new ProfilingSample(cmd, "DBufferRender", CustomSamplerId.DBufferRender.GetSampler())) { // We need to copy depth buffer texture if we want to bind it at this stage CopyDepthBufferIfNeeded(cmd); // Depth texture is now ready, bind it. cmd.SetGlobalTexture(HDShaderIDs._CameraDepthTexture, GetDepthTexture()); m_DbufferManager.ClearTargets(cmd, hdCamera); HDUtils.SetRenderTarget(cmd, hdCamera, m_DbufferManager.GetBuffersRTI(), m_CameraDepthStencilBuffer); // do not clear anymore m_DbufferManager.SetHTile(m_DbufferManager.bufferCount, cmd); renderContext.ExecuteCommandBuffer(cmd); cmd.Clear(); DrawRendererSettings drawSettings = new DrawRendererSettings(hdCamera.camera, HDShaderPassNames.s_EmptyName) { rendererConfiguration = 0, sorting = { flags = SortFlags.CommonOpaque } }; drawSettings.SetShaderPassName(0, HDShaderPassNames.s_MeshDecalsName); FilterRenderersSettings filterRenderersSettings = new FilterRenderersSettings(true) { renderQueueRange = HDRenderQueue.k_RenderQueue_AllOpaque }; renderContext.DrawRenderers(cullResults.visibleRenderers, ref drawSettings, filterRenderersSettings); DecalSystem.instance.RenderIntoDBuffer(cmd); m_DbufferManager.UnSetHTile(cmd); m_DbufferManager.SetHTileTexture(cmd); // mask per 8x8 tile used for optimization when looking up dbuffer values } } void RenderDebugViewMaterial(CullResults cull, HDCamera hdCamera, ScriptableRenderContext renderContext, CommandBuffer cmd) { using (new ProfilingSample(cmd, "DisplayDebug ViewMaterial", CustomSamplerId.DisplayDebugViewMaterial.GetSampler())) { if (m_CurrentDebugDisplaySettings.materialDebugSettings.IsDebugGBufferEnabled() && !hdCamera.frameSettings.enableForwardRenderingOnly) { using (new ProfilingSample(cmd, "DebugViewMaterialGBuffer", CustomSamplerId.DebugViewMaterialGBuffer.GetSampler())) { HDUtils.DrawFullScreen(cmd, hdCamera, m_currentDebugViewMaterialGBuffer, m_CameraColorBuffer); } } else { // When rendering debug material we shouldn't rely on a depth prepass for optimizing the alpha clip test. As it is control on the material inspector side // we must override the state here. HDUtils.SetRenderTarget(cmd, hdCamera, m_CameraColorBuffer, m_CameraDepthStencilBuffer, ClearFlag.All, CoreUtils.clearColorAllBlack); // Render Opaque forward RenderOpaqueRenderList(cull, hdCamera, renderContext, cmd, m_AllForwardOpaquePassNames, m_currentRendererConfigurationBakedLighting, stateBlock: m_DepthStateOpaque); // Render forward transparent RenderTransparentRenderList(cull, hdCamera, renderContext, cmd, m_AllTransparentPassNames, m_currentRendererConfigurationBakedLighting, stateBlock: m_DepthStateOpaque); } } // Last blit { using (new ProfilingSample(cmd, "Blit DebugView Material Debug", CustomSamplerId.BlitDebugViewMaterialDebug.GetSampler())) { // This Blit will flip the screen anything other than openGL HDUtils.BlitCameraTexture(cmd, hdCamera, m_CameraColorBuffer, BuiltinRenderTextureType.CameraTarget); } } } void RenderSSAO(CommandBuffer cmd, HDCamera hdCamera, ScriptableRenderContext renderContext, PostProcessLayer postProcessLayer) { var camera = hdCamera.camera; // Apply SSAO from PostProcessLayer if (hdCamera.frameSettings.enableSSAO && postProcessLayer != null && postProcessLayer.enabled) { var settings = postProcessLayer.GetSettings(); if (settings.IsEnabledAndSupported(null)) { postProcessLayer.BakeMSVOMap(cmd, camera, m_AmbientOcclusionBuffer, GetDepthTexture(), true); cmd.SetGlobalTexture(HDShaderIDs._AmbientOcclusionTexture, m_AmbientOcclusionBuffer); cmd.SetGlobalVector(HDShaderIDs._AmbientOcclusionParam, new Vector4(settings.color.value.r, settings.color.value.g, settings.color.value.b, settings.directLightingStrength.value)); PushFullScreenDebugTexture(hdCamera, cmd, m_AmbientOcclusionBuffer, FullScreenDebugMode.SSAO); return; } } // No AO applied - neutral is black, see the comment in the shaders cmd.SetGlobalTexture(HDShaderIDs._AmbientOcclusionTexture, RuntimeUtilities.blackTexture); cmd.SetGlobalVector(HDShaderIDs._AmbientOcclusionParam, Vector4.zero); } void RenderDeferredLighting(HDCamera hdCamera, CommandBuffer cmd) { if (hdCamera.frameSettings.enableForwardRenderingOnly) return; m_MRTCache2[0] = m_CameraColorBuffer; m_MRTCache2[1] = m_CameraSssDiffuseLightingBuffer; var depthTexture = GetDepthTexture(); var options = new LightLoop.LightingPassOptions(); if (hdCamera.frameSettings.enableSubsurfaceScattering) { // Output split lighting for materials asking for it (masked in the stencil buffer) options.outputSplitLighting = true; m_LightLoop.RenderDeferredLighting(hdCamera, cmd, m_CurrentDebugDisplaySettings, m_MRTCache2, m_CameraDepthStencilBuffer, depthTexture, options, m_DebugScreenSpaceTracingData); } // Output combined lighting for all the other materials. options.outputSplitLighting = false; m_LightLoop.RenderDeferredLighting(hdCamera, cmd, m_CurrentDebugDisplaySettings, m_MRTCache2, m_CameraDepthStencilBuffer, depthTexture, options, m_DebugScreenSpaceTracingData); } void UpdateSkyEnvironment(HDCamera hdCamera, CommandBuffer cmd) { m_SkyManager.UpdateEnvironment(hdCamera, m_LightLoop.GetCurrentSunLight(), cmd); } void RenderSky(HDCamera hdCamera, CommandBuffer cmd) { var visualEnv = VolumeManager.instance.stack.GetComponent(); m_SkyManager.RenderSky(hdCamera, m_LightLoop.GetCurrentSunLight(), m_CameraColorBuffer, m_CameraDepthStencilBuffer, m_CurrentDebugDisplaySettings, cmd); if (visualEnv.fogType != FogType.None) m_SkyManager.RenderOpaqueAtmosphericScattering(cmd); } public Texture2D ExportSkyToTexture() { return m_SkyManager.ExportSkyToTexture(); } // Render forward is use for both transparent and opaque objects. In case of deferred we can still render opaque object in forward. void RenderForward(CullResults cullResults, HDCamera hdCamera, ScriptableRenderContext renderContext, CommandBuffer cmd, ForwardPass pass) { // Guidelines: In deferred by default there is no opaque in forward. However it is possible to force an opaque material to render in forward // by using the pass "ForwardOnly". In this case the .shader should not have "Forward" but only a "ForwardOnly" pass. // It must also have a "DepthForwardOnly" and no "DepthOnly" pass as forward material (either deferred or forward only rendering) have always a depth pass. // The RenderForward pass will render the appropriate pass depends on the engine settings. In case of forward only rendering, both "Forward" pass and "ForwardOnly" pass // material will be render for both transparent and opaque. In case of deferred, both path are used for transparent but only "ForwardOnly" is use for opaque. // (Thus why "Forward" and "ForwardOnly" are exclusive, else they will render two times" string profileName; if (m_CurrentDebugDisplaySettings.IsDebugDisplayEnabled()) { profileName = k_ForwardPassDebugName[(int)pass]; } else { profileName = k_ForwardPassName[(int)pass]; } using (new ProfilingSample(cmd, profileName, CustomSamplerId.ForwardPassName.GetSampler())) { var camera = hdCamera.camera; m_LightLoop.RenderForward(camera, cmd, pass == ForwardPass.Opaque); var debugScreenSpaceTracing = m_CurrentDebugDisplaySettings.fullScreenDebugMode == FullScreenDebugMode.ScreenSpaceTracing; if (pass == ForwardPass.Opaque) { // In case of forward SSS we will bind all the required target. It is up to the shader to write into it or not. if (hdCamera.frameSettings.enableSubsurfaceScattering) { RenderTargetIdentifier[] m_MRTWithSSS = new RenderTargetIdentifier[2 + m_SSSBufferManager.sssBufferCount]; m_MRTWithSSS[0] = m_CameraColorBuffer; // Store the specular color m_MRTWithSSS[1] = m_CameraSssDiffuseLightingBuffer; for (int i = 0; i < m_SSSBufferManager.sssBufferCount; ++i) { m_MRTWithSSS[i + 2] = m_SSSBufferManager.GetSSSBuffer(i); } HDUtils.SetRenderTarget(cmd, hdCamera, m_MRTWithSSS, m_CameraDepthStencilBuffer); } else { HDUtils.SetRenderTarget(cmd, hdCamera, m_CameraColorBuffer, m_CameraDepthStencilBuffer); } var passNames = hdCamera.frameSettings.enableForwardRenderingOnly ? m_ForwardAndForwardOnlyPassNames : m_ForwardOnlyPassNames; var debugSSTThisPass = debugScreenSpaceTracing && (m_CurrentDebugDisplaySettings.lightingDebugSettings.debugLightingMode == DebugLightingMode.ScreenSpaceTracingReflection); if (debugSSTThisPass) cmd.SetRandomWriteTarget(7, m_DebugScreenSpaceTracingData); RenderOpaqueRenderList(cullResults, hdCamera, renderContext, cmd, passNames, m_currentRendererConfigurationBakedLighting); if (debugSSTThisPass) cmd.ClearRandomWriteTargets(); } else { HDUtils.SetRenderTarget(cmd, hdCamera, m_CameraColorBuffer, m_CameraDepthStencilBuffer); if ((hdCamera.frameSettings.enableDBuffer) && (DecalSystem.m_DecalDatasCount > 0)) // enable d-buffer flag value is being interpreted more like enable decals in general now that we have clustered // decal datas count is 0 if no decals affect transparency { DecalSystem.instance.SetAtlas(cmd); // for clustered decals } var debugSSTThisPass = debugScreenSpaceTracing && (m_CurrentDebugDisplaySettings.lightingDebugSettings.debugLightingMode == DebugLightingMode.ScreenSpaceTracingRefraction); if (debugSSTThisPass) cmd.SetRandomWriteTarget(7, m_DebugScreenSpaceTracingData); RenderTransparentRenderList(cullResults, hdCamera, renderContext, cmd, m_AllTransparentPassNames, m_currentRendererConfigurationBakedLighting, pass == ForwardPass.PreRefraction ? HDRenderQueue.k_RenderQueue_PreRefraction : HDRenderQueue.k_RenderQueue_Transparent); if (debugSSTThisPass) cmd.ClearRandomWriteTargets(); } } } // This is use to Display legacy shader with an error shader [Conditional("DEVELOPMENT_BUILD"), Conditional("UNITY_EDITOR")] void RenderForwardError(CullResults cullResults, HDCamera hdCamera, ScriptableRenderContext renderContext, CommandBuffer cmd) { using (new ProfilingSample(cmd, "Render Forward Error", CustomSamplerId.RenderForwardError.GetSampler())) { HDUtils.SetRenderTarget(cmd, hdCamera, m_CameraColorBuffer, m_CameraDepthStencilBuffer); RenderOpaqueRenderList(cullResults, hdCamera, renderContext, cmd, m_ForwardErrorPassNames, 0, RenderQueueRange.all, null, m_ErrorMaterial); } } void RenderTransparentDepthPostpass(CullResults cullResults, HDCamera hdCamera, ScriptableRenderContext renderContext, CommandBuffer cmd, ForwardPass pass) { if (!hdCamera.frameSettings.enableTransparentPostpass) return; using (new ProfilingSample(cmd, "Render Transparent Depth Post ", CustomSamplerId.TransparentDepthPostpass.GetSampler())) { HDUtils.SetRenderTarget(cmd, hdCamera, m_CameraDepthStencilBuffer); RenderTransparentRenderList(cullResults, hdCamera, renderContext, cmd, m_TransparentDepthPostpassNames); } } void RenderObjectsVelocity(CullResults cullResults, HDCamera hdCamera, ScriptableRenderContext renderContext, CommandBuffer cmd) { if (!hdCamera.frameSettings.enableMotionVectors || !hdCamera.frameSettings.enableObjectMotionVectors) return; using (new ProfilingSample(cmd, "Objects Velocity", CustomSamplerId.ObjectsVelocity.GetSampler())) { // These flags are still required in SRP or the engine won't compute previous model matrices... // If the flag hasn't been set yet on this camera, motion vectors will skip a frame. hdCamera.camera.depthTextureMode |= DepthTextureMode.MotionVectors | DepthTextureMode.Depth; HDUtils.SetRenderTarget(cmd, hdCamera, m_VelocityBuffer, m_CameraDepthStencilBuffer); RenderOpaqueRenderList(cullResults, hdCamera, renderContext, cmd, HDShaderPassNames.s_MotionVectorsName, RendererConfiguration.PerObjectMotionVectors); } } void RenderCameraVelocity(CullResults cullResults, HDCamera hdCamera, ScriptableRenderContext renderContext, CommandBuffer cmd) { if (!hdCamera.frameSettings.enableMotionVectors) return; using (new ProfilingSample(cmd, "Camera Velocity", CustomSamplerId.CameraVelocity.GetSampler())) { // These flags are still required in SRP or the engine won't compute previous model matrices... // If the flag hasn't been set yet on this camera, motion vectors will skip a frame. hdCamera.camera.depthTextureMode |= DepthTextureMode.MotionVectors | DepthTextureMode.Depth; HDUtils.DrawFullScreen(cmd, hdCamera, m_CameraMotionVectorsMaterial, m_VelocityBuffer, m_CameraDepthStencilBuffer, null, 0); PushFullScreenDebugTexture(hdCamera, cmd, m_VelocityBuffer, FullScreenDebugMode.MotionVectors); #if UNITY_EDITOR // In scene view there is no motion vector, so we clear the RT to black if (hdCamera.camera.cameraType == CameraType.SceneView) { HDUtils.SetRenderTarget(cmd, hdCamera, m_VelocityBuffer, m_CameraDepthStencilBuffer, ClearFlag.Color, CoreUtils.clearColorAllBlack); } #endif } } void RenderColorPyramid(HDCamera hdCamera, CommandBuffer cmd, ScriptableRenderContext renderContext, bool isPreRefraction) { if (isPreRefraction) { if (!hdCamera.frameSettings.enableRoughRefraction) return; } else { // TODO: This final Gaussian pyramid can be reuse by Bloom and SSR in the future, so disable it only if there is no postprocess AND no distortion if (!hdCamera.frameSettings.enableDistortion && !hdCamera.frameSettings.enablePostprocess && !hdCamera.frameSettings.enableSSR) return; } var cameraRT = hdCamera.GetCurrentFrameRT((int)HDCameraFrameHistoryType.ColorPyramid) ?? hdCamera.AllocHistoryFrameRT((int)HDCameraFrameHistoryType.ColorPyramid, m_BufferPyramid.AllocColorRT); using (new ProfilingSample(cmd, "Color Pyramid", CustomSamplerId.ColorPyramid.GetSampler())) m_BufferPyramid.RenderColorPyramid(hdCamera, cmd, renderContext, m_CameraColorBuffer, cameraRT); Vector2 pyramidScale = m_BufferPyramid.GetPyramidToScreenScale(hdCamera, cameraRT); PushFullScreenDebugTextureMip(hdCamera, cmd, cameraRT, m_BufferPyramid.GetPyramidLodCount(new Vector2Int(hdCamera.actualWidth, hdCamera.actualHeight)), new Vector4(pyramidScale.x, pyramidScale.y, 0.0f, 0.0f), isPreRefraction ? FullScreenDebugMode.PreRefractionColorPyramid : FullScreenDebugMode.FinalColorPyramid); } void RenderDepthPyramid(HDCamera hdCamera, CommandBuffer cmd, ScriptableRenderContext renderContext, FullScreenDebugMode debugMode) { if (!hdCamera.frameSettings.enableRoughRefraction) return; var cameraRT = hdCamera.GetCurrentFrameRT((int)HDCameraFrameHistoryType.DepthPyramid) ?? hdCamera.AllocHistoryFrameRT((int)HDCameraFrameHistoryType.DepthPyramid, m_BufferPyramid.AllocDepthRT); using (new ProfilingSample(cmd, "Depth Pyramid", CustomSamplerId.DepthPyramid.GetSampler())) m_BufferPyramid.RenderDepthPyramid(hdCamera, cmd, renderContext, GetDepthTexture(), cameraRT); Vector2 pyramidScale = m_BufferPyramid.GetPyramidToScreenScale(hdCamera, cameraRT); PushFullScreenDebugTextureMip(hdCamera, cmd, cameraRT, m_BufferPyramid.GetPyramidLodCount(new Vector2Int(hdCamera.actualWidth, hdCamera.actualHeight)), new Vector4(pyramidScale.x, pyramidScale.y, 0.0f, 0.0f), debugMode); } void RenderPostProcess(HDCamera hdcamera, CommandBuffer cmd, PostProcessLayer layer) { using (new ProfilingSample(cmd, "Post-processing", CustomSamplerId.PostProcessing.GetSampler())) { RenderTargetIdentifier source = m_CameraColorBuffer; // For console we are not allowed to resize the windows, so don't use our hack. bool tempHACK = !IsConsolePlatform(); if (tempHACK) { // TEMPORARY: // Since we don't render to the full render textures, we need to feed the post processing stack with the right scale/bias. // This feature not being implemented yet, we'll just copy the relevant buffers into an appropriately sized RT. cmd.ReleaseTemporaryRT(HDShaderIDs._CameraDepthTexture); cmd.ReleaseTemporaryRT(HDShaderIDs._CameraMotionVectorsTexture); cmd.ReleaseTemporaryRT(HDShaderIDs._CameraColorTexture); cmd.GetTemporaryRT(HDShaderIDs._CameraDepthTexture, hdcamera.actualWidth, hdcamera.actualHeight, m_CameraDepthStencilBuffer.rt.depth, FilterMode.Point, m_CameraDepthStencilBuffer.rt.format); m_CopyDepth.SetTexture(HDShaderIDs._InputDepth, m_CameraDepthStencilBuffer); cmd.Blit(null, HDShaderIDs._CameraDepthTexture, m_CopyDepth); if (m_VelocityBuffer != null) { cmd.GetTemporaryRT(HDShaderIDs._CameraMotionVectorsTexture, hdcamera.actualWidth, hdcamera.actualHeight, 0, FilterMode.Point, m_VelocityBuffer.rt.format); HDUtils.BlitCameraTexture(cmd, hdcamera, m_VelocityBuffer, HDShaderIDs._CameraMotionVectorsTexture); } cmd.GetTemporaryRT(HDShaderIDs._CameraColorTexture, hdcamera.actualWidth, hdcamera.actualHeight, 0, FilterMode.Point, m_CameraColorBuffer.rt.format); HDUtils.BlitCameraTexture(cmd, hdcamera, m_CameraColorBuffer, HDShaderIDs._CameraColorTexture); source = HDShaderIDs._CameraColorTexture; } else { // Note: Here we don't use GetDepthTexture() to get the depth texture but m_CameraDepthStencilBuffer as the Forward transparent pass can // write extra data to deal with DOF/MB cmd.SetGlobalTexture(HDShaderIDs._CameraDepthTexture, m_CameraDepthStencilBuffer); cmd.SetGlobalTexture(HDShaderIDs._CameraMotionVectorsTexture, m_VelocityBuffer); } var context = hdcamera.postprocessRenderContext; context.Reset(); context.source = source; context.destination = BuiltinRenderTextureType.CameraTarget; context.command = cmd; context.camera = hdcamera.camera; context.sourceFormat = RenderTextureFormat.ARGBHalf; context.flip = hdcamera.camera.targetTexture == null; layer.Render(context); } } public void ApplyDebugDisplaySettings(HDCamera hdCamera, CommandBuffer cmd) { if (m_CurrentDebugDisplaySettings.IsDebugDisplayEnabled() || m_CurrentDebugDisplaySettings.colorPickerDebugSettings.colorPickerMode != ColorPickerDebugMode.None) { // enable globally the keyword DEBUG_DISPLAY on shader that support it with multicompile cmd.EnableShaderKeyword("DEBUG_DISPLAY"); // This is for texture streaming m_CurrentDebugDisplaySettings.UpdateMaterials(); var lightingDebugSettings = m_CurrentDebugDisplaySettings.lightingDebugSettings; var debugAlbedo = new Vector4(lightingDebugSettings.overrideAlbedo ? 1.0f : 0.0f, lightingDebugSettings.overrideAlbedoValue.r, lightingDebugSettings.overrideAlbedoValue.g, lightingDebugSettings.overrideAlbedoValue.b); var debugSmoothness = new Vector4(lightingDebugSettings.overrideSmoothness ? 1.0f : 0.0f, lightingDebugSettings.overrideSmoothnessValue, 0.0f, 0.0f); var debugNormal = new Vector4(lightingDebugSettings.overrideNormal ? 1.0f : 0.0f, 0.0f, 0.0f, 0.0f); var debugSpecularColor = new Vector4(lightingDebugSettings.overrideSpecularColor ? 1.0f : 0.0f, lightingDebugSettings.overrideSpecularColorValue.r, lightingDebugSettings.overrideSpecularColorValue.g, lightingDebugSettings.overrideSpecularColorValue.b); cmd.SetGlobalInt(HDShaderIDs._DebugViewMaterial, (int)m_CurrentDebugDisplaySettings.GetDebugMaterialIndex()); cmd.SetGlobalInt(HDShaderIDs._DebugLightingMode, (int)m_CurrentDebugDisplaySettings.GetDebugLightingMode()); cmd.SetGlobalInt(HDShaderIDs._DebugLightingSubMode, (int)m_CurrentDebugDisplaySettings.GetDebugLightingSubMode()); cmd.SetGlobalInt(HDShaderIDs._DebugMipMapMode, (int)m_CurrentDebugDisplaySettings.GetDebugMipMapMode()); cmd.SetGlobalVector(HDShaderIDs._DebugLightingAlbedo, debugAlbedo); cmd.SetGlobalVector(HDShaderIDs._DebugLightingSmoothness, debugSmoothness); cmd.SetGlobalVector(HDShaderIDs._DebugLightingNormal, debugNormal); cmd.SetGlobalVector(HDShaderIDs._DebugLightingSpecularColor, debugSpecularColor); cmd.SetGlobalVector(HDShaderIDs._MousePixelCoord, HDUtils.GetMouseCoordinates(hdCamera)); cmd.SetGlobalVector(HDShaderIDs._MouseClickPixelCoord, HDUtils.GetMouseClickCoordinates(hdCamera)); cmd.SetGlobalTexture(HDShaderIDs._DebugFont, m_Asset.renderPipelineResources.debugFontTexture); cmd.SetGlobalInt(HDShaderIDs._DebugStep, HDUtils.debugStep); cmd.SetGlobalInt(HDShaderIDs._ShowGrid, m_CurrentDebugDisplaySettings.showSSRayGrid ? 1 : 0); cmd.SetGlobalInt(HDShaderIDs._ShowDepthPyramidDebug, m_CurrentDebugDisplaySettings.showSSRayDepthPyramid ? 1 : 0); cmd.SetGlobalInt(HDShaderIDs._ShowSSRaySampledColor, m_CurrentDebugDisplaySettings.showSSSampledColor ? 1 : 0); // The DebugNeedsExposure test allows us to set a neutral value if exposure is not needed. This way we don't need to make various tests inside shaders but only in this function. cmd.SetGlobalFloat(HDShaderIDs._DebugExposure, m_CurrentDebugDisplaySettings.DebugNeedsExposure() ? lightingDebugSettings.debugExposure : 0.0f); } else { // TODO: Be sure that if there is no change in the state of this keyword, it doesn't imply any work on CPU side! else we will need to save the sate somewher cmd.DisableShaderKeyword("DEBUG_DISPLAY"); } } public void PushColorPickerDebugTexture(CommandBuffer cmd, RTHandleSystem.RTHandle textureID, HDCamera hdCamera) { if (m_CurrentDebugDisplaySettings.colorPickerDebugSettings.colorPickerMode != ColorPickerDebugMode.None || m_DebugDisplaySettings.falseColorDebugSettings.falseColor) { using (new ProfilingSample(cmd, "Push To Color Picker")) { HDUtils.BlitCameraTexture(cmd, hdCamera, textureID, m_DebugColorPickerBuffer); } } } // TODO TEMP: Not sure I want to keep this special case. Gotta see how to get rid of it (not sure it will work correctly for non-full viewports. public void PushColorPickerDebugTexture(HDCamera hdCamera, CommandBuffer cmd, RenderTargetIdentifier textureID) { if (m_CurrentDebugDisplaySettings.colorPickerDebugSettings.colorPickerMode != ColorPickerDebugMode.None || m_DebugDisplaySettings.falseColorDebugSettings.falseColor) { using (new ProfilingSample(cmd, "Push To Color Picker")) { HDUtils.BlitCameraTexture(cmd, hdCamera, textureID, m_DebugColorPickerBuffer); } } } public void PushFullScreenDebugTexture(HDCamera hdCamera, CommandBuffer cmd, RTHandleSystem.RTHandle textureID, FullScreenDebugMode debugMode) { if (debugMode == m_CurrentDebugDisplaySettings.fullScreenDebugMode) { m_FullScreenDebugPushed = true; // We need this flag because otherwise if no full screen debug is pushed (like for example if the corresponding pass is disabled), when we render the result in RenderDebug m_DebugFullScreenTempBuffer will contain potential garbage HDUtils.BlitCameraTexture(cmd, hdCamera, textureID, m_DebugFullScreenTempBuffer); } } void PushFullScreenDebugTextureMip(HDCamera hdCamera, CommandBuffer cmd, RTHandleSystem.RTHandle texture, int lodCount, Vector4 scaleBias, FullScreenDebugMode debugMode) { if (debugMode == m_CurrentDebugDisplaySettings.fullScreenDebugMode) { var mipIndex = Mathf.FloorToInt(m_CurrentDebugDisplaySettings.fullscreenDebugMip * (lodCount)); m_FullScreenDebugPushed = true; // We need this flag because otherwise if no full screen debug is pushed (like for example if the corresponding pass is disabled), when we render the result in RenderDebug m_DebugFullScreenTempBuffer will contain potential garbage HDUtils.BlitCameraTexture(cmd, hdCamera, texture, m_DebugFullScreenTempBuffer, scaleBias, mipIndex); } } void RenderDebug(HDCamera hdCamera, CommandBuffer cmd) { // We don't want any overlay for these kind of rendering if (hdCamera.camera.cameraType == CameraType.Reflection || hdCamera.camera.cameraType == CameraType.Preview) return; using (new ProfilingSample(cmd, "Render Debug", CustomSamplerId.RenderDebug.GetSampler())) { // First render full screen debug texture if (m_CurrentDebugDisplaySettings.fullScreenDebugMode != FullScreenDebugMode.None && m_FullScreenDebugPushed) { m_FullScreenDebugPushed = false; cmd.SetGlobalTexture(HDShaderIDs._DebugFullScreenTexture, m_DebugFullScreenTempBuffer); // TODO: Replace with command buffer call when available m_DebugFullScreen.SetFloat(HDShaderIDs._FullScreenDebugMode, (float)m_CurrentDebugDisplaySettings.fullScreenDebugMode); // Everything we have capture is flipped (as it happen before FinalPass/postprocess/Blit. So if we are not in SceneView // (i.e. we have perform a flip, we need to flip the input texture) m_DebugFullScreen.SetFloat(HDShaderIDs._RequireToFlipInputTexture, hdCamera.camera.cameraType != CameraType.SceneView ? 1.0f : 0.0f); m_DebugFullScreen.SetBuffer(HDShaderIDs._DebugScreenSpaceTracingData, m_DebugScreenSpaceTracingData); m_DebugFullScreen.SetTexture(HDShaderIDs._DepthPyramidTexture, hdCamera.GetCurrentFrameRT((int)HDCameraFrameHistoryType.DepthPyramid)); HDUtils.DrawFullScreen(cmd, hdCamera, m_DebugFullScreen, (RenderTargetIdentifier)BuiltinRenderTextureType.CameraTarget); PushColorPickerDebugTexture(hdCamera, cmd, (RenderTargetIdentifier)BuiltinRenderTextureType.CameraTarget); } // Then overlays float x = 0; float overlayRatio = m_CurrentDebugDisplaySettings.debugOverlayRatio; float overlaySize = Math.Min(hdCamera.actualHeight, hdCamera.actualWidth) * overlayRatio; float y = hdCamera.actualHeight - overlaySize; var lightingDebug = m_CurrentDebugDisplaySettings.lightingDebugSettings; if (lightingDebug.displaySkyReflection) { var skyReflection = m_SkyManager.skyReflection; m_SharedPropertyBlock.SetTexture(HDShaderIDs._InputCubemap, skyReflection); m_SharedPropertyBlock.SetFloat(HDShaderIDs._Mipmap, lightingDebug.skyReflectionMipmap); m_SharedPropertyBlock.SetFloat(HDShaderIDs._RequireToFlipInputTexture, hdCamera.camera.cameraType != CameraType.SceneView ? 1.0f : 0.0f); m_SharedPropertyBlock.SetFloat(HDShaderIDs._DebugExposure, lightingDebug.debugExposure); cmd.SetViewport(new Rect(x, y, overlaySize, overlaySize)); cmd.DrawProcedural(Matrix4x4.identity, m_DebugDisplayLatlong, 0, MeshTopology.Triangles, 3, 1, m_SharedPropertyBlock); HDUtils.NextOverlayCoord(ref x, ref y, overlaySize, overlaySize, hdCamera.actualWidth); } m_LightLoop.RenderDebugOverlay(hdCamera, cmd, m_CurrentDebugDisplaySettings, ref x, ref y, overlaySize, hdCamera.actualWidth); DecalSystem.instance.RenderDebugOverlay(hdCamera, cmd, m_CurrentDebugDisplaySettings, ref x, ref y, overlaySize, hdCamera.actualWidth); if (m_CurrentDebugDisplaySettings.colorPickerDebugSettings.colorPickerMode != ColorPickerDebugMode.None || m_CurrentDebugDisplaySettings.falseColorDebugSettings.falseColor) { ColorPickerDebugSettings colorPickerDebugSettings = m_CurrentDebugDisplaySettings.colorPickerDebugSettings; FalseColorDebugSettings falseColorDebugSettings = m_CurrentDebugDisplaySettings.falseColorDebugSettings; var falseColorThresholds = new Vector4(falseColorDebugSettings.colorThreshold0, falseColorDebugSettings.colorThreshold1, falseColorDebugSettings.colorThreshold2, falseColorDebugSettings.colorThreshold3); // Here we have three cases: // - Material debug is enabled, this is the buffer we display // - Otherwise we display the HDR buffer before postprocess and distortion // - If fullscreen debug is enabled we always use it cmd.SetGlobalTexture(HDShaderIDs._DebugColorPickerTexture, m_DebugColorPickerBuffer); // No SetTexture with RenderTarget identifier... so use SetGlobalTexture // TODO: Replace with command buffer call when available m_DebugColorPicker.SetColor(HDShaderIDs._ColorPickerFontColor, colorPickerDebugSettings.fontColor); m_DebugColorPicker.SetInt(HDShaderIDs._ColorPickerMode, (int)colorPickerDebugSettings.colorPickerMode); m_DebugColorPicker.SetInt(HDShaderIDs._FalseColorEnabled, falseColorDebugSettings.falseColor ? 1 : 0); m_DebugColorPicker.SetVector(HDShaderIDs._FalseColorThresholds, falseColorThresholds); // The material display debug perform sRGBToLinear conversion as the final blit currently hardcode a linearToSrgb conversion. As when we read with color picker this is not done, // we perform it inside the color picker shader. But we shouldn't do it for HDR buffer. m_DebugColorPicker.SetFloat(HDShaderIDs._ApplyLinearToSRGB, m_CurrentDebugDisplaySettings.IsDebugMaterialDisplayEnabled() ? 1.0f : 0.0f); // Everything we have capture is flipped (as it happen before FinalPass/postprocess/Blit. So if we are not in SceneView // (i.e. we have perform a flip, we need to flip the input texture) + we need to handle the case were we debug a fullscreen pass that have already perform the flip m_DebugColorPicker.SetFloat(HDShaderIDs._RequireToFlipInputTexture, hdCamera.camera.cameraType != CameraType.SceneView ? 1.0f : 0.0f); HDUtils.DrawFullScreen(cmd, hdCamera, m_DebugColorPicker, (RenderTargetIdentifier)BuiltinRenderTextureType.CameraTarget); } } } void ClearBuffers(HDCamera hdCamera, CommandBuffer cmd) { using (new ProfilingSample(cmd, "ClearBuffers", CustomSamplerId.ClearBuffers.GetSampler())) { // We clear only the depth buffer, no need to clear the various color buffer as we overwrite them. // Clear depth/stencil and init buffers using (new ProfilingSample(cmd, "Clear Depth/Stencil", CustomSamplerId.ClearDepthStencil.GetSampler())) { if (hdCamera.clearDepth) { HDUtils.SetRenderTarget(cmd, hdCamera, m_CameraColorBuffer, m_CameraDepthStencilBuffer, ClearFlag.Depth); } } // Clear the HDR target using (new ProfilingSample(cmd, "Clear HDR target", CustomSamplerId.ClearHDRTarget.GetSampler())) { if (hdCamera.clearColorMode == HDAdditionalCameraData.ClearColorMode.BackgroundColor || // If we want the sky but the sky don't exist, still clear with background color (hdCamera.clearColorMode == HDAdditionalCameraData.ClearColorMode.Sky && !m_SkyManager.IsVisualSkyValid()) || // Special handling for Preview we force to clear with background color (i.e black) // Note that the sky use in this case is the last one setup. If there is no scene or game, there is no sky use as reflection in the preview HDUtils.IsRegularPreviewCamera(hdCamera.camera) ) { Color clearColor = hdCamera.backgroundColorHDR; HDUtils.SetRenderTarget(cmd, hdCamera, m_CameraColorBuffer, m_CameraDepthStencilBuffer, ClearFlag.Color, clearColor); } } // Clear the diffuse SSS lighting target using (new ProfilingSample(cmd, "Clear SSS diffuse target", CustomSamplerId.ClearSSSDiffuseTarget.GetSampler())) { HDUtils.SetRenderTarget(cmd, hdCamera, m_CameraSssDiffuseLightingBuffer, ClearFlag.Color, CoreUtils.clearColorAllBlack); } // We don't need to clear the GBuffers as scene is rewrite and we are suppose to only access valid data (invalid data are tagged with stencil as StencilLightingUsage.NoLighting), // This is to save some performance if (!hdCamera.frameSettings.enableForwardRenderingOnly) { // We still clear in case of debug mode if (m_CurrentDebugDisplaySettings.IsDebugDisplayEnabled()) { using (new ProfilingSample(cmd, "Clear GBuffer", CustomSamplerId.ClearGBuffer.GetSampler())) { HDUtils.SetRenderTarget(cmd, hdCamera, m_GbufferManager.GetBuffersRTI(), m_CameraDepthStencilBuffer, ClearFlag.Color, CoreUtils.clearColorAllBlack); } } } } } void StartStereoRendering(ScriptableRenderContext renderContext, HDCamera hdCamera) { if (hdCamera.frameSettings.enableStereo) renderContext.StartMultiEye(hdCamera.camera); } void StopStereoRendering(ScriptableRenderContext renderContext, HDCamera hdCamera) { if (hdCamera.frameSettings.enableStereo) renderContext.StopMultiEye(hdCamera.camera); } /// /// Push a RenderTexture handled by a RTHandle in global parameters. /// /// Command buffer to queue commands /// RTHandle handling the RenderTexture /// TextureID to use for texture binding. /// Property ID to store RTHandle size ((x,y) = Actual Pixel Size, (z,w) = 1 / Actual Pixel Size). /// PropertyID to store RTHandle scale ((x,y) = Screen Scale, z = lod count, w = unused). void PushGlobalRTHandle(CommandBuffer cmd, RTHandleSystem.RTHandle rth, int textureID, int sizeID, int scaleID) { if (rth != null) { cmd.SetGlobalTexture(textureID, rth); cmd.SetGlobalVector( sizeID, new Vector4( rth.referenceSize.x, rth.referenceSize.y, 1f / rth.referenceSize.x, 1f / rth.referenceSize.y ) ); cmd.SetGlobalVector( scaleID, new Vector4( rth.referenceSize.x / (float)rth.rt.width, rth.referenceSize.y / (float)rth.rt.height, Mathf.Log(Mathf.Min(rth.rt.width, rth.rt.height), 2), 0.0f ) ); } else { cmd.SetGlobalTexture(textureID, Texture2D.blackTexture); cmd.SetGlobalVector(sizeID, Vector4.one); cmd.SetGlobalVector(scaleID, Vector4.one); } } } }