Shader "Hidden/Internal-Obscurity" { Properties { _LightTexture0 ("", any) = "" {} _ShadowMapTexture ("", any) = "" {} _SrcBlend ("", Float) = 1 _DstBlend ("", Float) = 1 } SubShader { Pass { ZWrite Off ZTest Always Cull Off Blend Off //Blend [_SrcBlend] [_DstBlend] CGPROGRAM #pragma target 5.0 #pragma vertex vert #pragma fragment frag //#pragma multi_compile USE_FPTL_LIGHTLIST USE_CLUSTERED_LIGHTLIST //#define ENABLE_DEPTH_TEXTURE_BACKPLANE //#define USE_CLUSTERED_LIGHTLIST #include "UnityCG.cginc" #include "UnityStandardBRDF.cginc" #include "UnityStandardUtils.cginc" #include "UnityPBSLighting.cginc" #include "..\common\ShaderBase.h" #include "LightDefinitions.cs.hlsl" uniform float4x4 g_mViewToWorld; uniform float4x4 g_mInvScrProjection; uniform float4x4 g_mScrProjection; uniform uint g_nDirLights; //--------------------------------------------------------------------------------------------------------------------------------------------------------- // TODO: clean up.. -va #define MAX_SHADOW_LIGHTS 10 #define MAX_SHADOWMAP_PER_LIGHT 6 #define MAX_DIRECTIONAL_SPLIT 4 #define CUBEMAPFACE_POSITIVE_X 0 #define CUBEMAPFACE_NEGATIVE_X 1 #define CUBEMAPFACE_POSITIVE_Y 2 #define CUBEMAPFACE_NEGATIVE_Y 3 #define CUBEMAPFACE_POSITIVE_Z 4 #define CUBEMAPFACE_NEGATIVE_Z 5 CBUFFER_START(ShadowLightData) float4 g_vShadow3x3PCFTerms0; float4 g_vShadow3x3PCFTerms1; float4 g_vShadow3x3PCFTerms2; float4 g_vShadow3x3PCFTerms3; float4 g_vDirShadowSplitSpheres[MAX_DIRECTIONAL_SPLIT]; float4x4 g_matWorldToShadow[MAX_SHADOW_LIGHTS * MAX_SHADOWMAP_PER_LIGHT]; CBUFFER_END //--------------------------------------------------------------------------------------------------------------------------------------------------------- Texture2D _CameraDepthTexture; Texture2D _CameraGBufferTexture0; Texture2D _CameraGBufferTexture1; Texture2D _CameraGBufferTexture2; //UNITY_DECLARE_TEX2D(_LightTextureB0); sampler2D _LightTextureB0; UNITY_DECLARE_TEX2DARRAY(_spotCookieTextures); UNITY_DECLARE_TEXCUBEARRAY(_pointCookieTextures); StructuredBuffer g_vLightList; StructuredBuffer g_vLightData; StructuredBuffer g_dirLightData; float GetLinearDepth(float zDptBufSpace) // 0 is near 1 is far { float3 vP = float3(0.0f,0.0f,zDptBufSpace); float4 v4Pres = mul(g_mInvScrProjection, float4(vP,1.0)); return v4Pres.z / v4Pres.w; } float3 GetViewPosFromLinDepth(float2 v2ScrPos, float fLinDepth) { float fSx = g_mScrProjection[0].x; //float fCx = g_mScrProjection[2].x; float fCx = g_mScrProjection[0].z; float fSy = g_mScrProjection[1].y; //float fCy = g_mScrProjection[2].y; float fCy = g_mScrProjection[1].z; #ifdef LEFT_HAND_COORDINATES return fLinDepth*float3( ((v2ScrPos.x-fCx)/fSx), ((v2ScrPos.y-fCy)/fSy), 1.0 ); #else return fLinDepth*float3( -((v2ScrPos.x+fCx)/fSx), -((v2ScrPos.y+fCy)/fSy), 1.0 ); #endif } #ifdef USE_CLUSTERED_LIGHTLIST uniform float g_fClustScale; uniform float g_fClustBase; uniform float g_fNearPlane; //uniform int g_iLog2NumClusters; // numClusters = (1< g_vLayeredOffsetsBuffer; #ifdef ENABLE_DEPTH_TEXTURE_BACKPLANE Buffer g_fModulUserscale; #endif #include "ClusteredUtils.h" void GetLightCountAndStart(out uint uStart, out uint uNrLights, uint2 tileIDX, int nrTilesX, int nrTilesY, float linDepth) { g_iLog2NumClusters = (int) (g_fLog2NumClusters+0.5); // ridiculous #ifdef ENABLE_DEPTH_TEXTURE_BACKPLANE float modulScale = g_fModulUserscale[tileIDX.y*nrTilesX + tileIDX.x]; #else float modulScale = 1.0; #endif int clustIdx = SnapToClusterIdx(linDepth, modulScale); int nrClusters = (1<>27)&31; } uint FetchIndex(const uint tileOffs, const uint l) { return g_vLightList[ tileOffs+l ]; } #else void GetLightCountAndStart(out uint uStart, out uint uNrLights, uint2 tileIDX, int nrTilesX, int nrTilesY, float linDepth) { const int tileOffs = (tileIDX.y+DIRECT_LIGHT*nrTilesY)*nrTilesX+tileIDX.x; uNrLights = g_vLightList[ 16*tileOffs + 0]&0xffff; uStart = tileOffs; } uint FetchIndex(const uint tileOffs, const uint l) { const uint l1 = l+1; return (g_vLightList[ 16*tileOffs + (l1>>1)]>>((l1&1)*16))&0xffff; } #endif float3 ExecuteLightList(uint2 pixCoord, uint start, uint numLights, float linDepth); float3 OverlayHeatMap(uint uNumLights, float3 c); #define VALVE_DECLARE_SHADOWMAP( tex ) Texture2D tex; SamplerComparisonState sampler##tex #define VALVE_SAMPLE_SHADOW( tex, coord ) tex.SampleCmpLevelZero( sampler##tex, (coord).xy, (coord).z ) VALVE_DECLARE_SHADOWMAP(g_tShadowBuffer); float ComputeShadow_PCF_3x3_Gaussian(float3 vPositionWs, float4x4 matWorldToShadow) { float4 vPositionTextureSpace = mul(float4(vPositionWs.xyz, 1.0), matWorldToShadow); vPositionTextureSpace.xyz /= vPositionTextureSpace.w; float2 shadowMapCenter = vPositionTextureSpace.xy; if ((shadowMapCenter.x < 0.0f) || (shadowMapCenter.x > 1.0f) || (shadowMapCenter.y < 0.0f) || (shadowMapCenter.y > 1.0f)) return 1.0f; float objDepth = saturate(257.0 / 256.0 - vPositionTextureSpace.z); float4 v20Taps; v20Taps.x = VALVE_SAMPLE_SHADOW(g_tShadowBuffer, float3(shadowMapCenter.xy + g_vShadow3x3PCFTerms1.xy, objDepth)).x; // 1 1 v20Taps.y = VALVE_SAMPLE_SHADOW(g_tShadowBuffer, float3(shadowMapCenter.xy + g_vShadow3x3PCFTerms1.zy, objDepth)).x; // -1 1 v20Taps.z = VALVE_SAMPLE_SHADOW(g_tShadowBuffer, float3(shadowMapCenter.xy + g_vShadow3x3PCFTerms1.xw, objDepth)).x; // 1 -1 v20Taps.w = VALVE_SAMPLE_SHADOW(g_tShadowBuffer, float3(shadowMapCenter.xy + g_vShadow3x3PCFTerms1.zw, objDepth)).x; // -1 -1 float flSum = dot(v20Taps.xyzw, float4(0.25, 0.25, 0.25, 0.25)); if ((flSum == 0.0) || (flSum == 1.0)) return flSum; flSum *= g_vShadow3x3PCFTerms0.x * 4.0; float4 v33Taps; v33Taps.x = VALVE_SAMPLE_SHADOW(g_tShadowBuffer, float3(shadowMapCenter.xy + g_vShadow3x3PCFTerms2.xz, objDepth)).x; // 1 0 v33Taps.y = VALVE_SAMPLE_SHADOW(g_tShadowBuffer, float3(shadowMapCenter.xy + g_vShadow3x3PCFTerms3.xz, objDepth)).x; // -1 0 v33Taps.z = VALVE_SAMPLE_SHADOW(g_tShadowBuffer, float3(shadowMapCenter.xy + g_vShadow3x3PCFTerms3.zy, objDepth)).x; // 0 -1 v33Taps.w = VALVE_SAMPLE_SHADOW(g_tShadowBuffer, float3(shadowMapCenter.xy + g_vShadow3x3PCFTerms2.zy, objDepth)).x; // 0 1 flSum += dot(v33Taps.xyzw, g_vShadow3x3PCFTerms0.yyyy); flSum += VALVE_SAMPLE_SHADOW(g_tShadowBuffer, float3(shadowMapCenter.xy, objDepth)).x * g_vShadow3x3PCFTerms0.z; return flSum; } //--------------------------------------------------------------------------------------------------------------------------------------------------------- /** * Gets the cascade weights based on the world position of the fragment and the positions of the split spheres for each cascade. * Returns an invalid split index if past shadowDistance (ie 4 is invalid for cascade) */ float GetSplitSphereIndexForDirshadows(float3 wpos) { float3 fromCenter0 = wpos.xyz - g_vDirShadowSplitSpheres[0].xyz; float3 fromCenter1 = wpos.xyz - g_vDirShadowSplitSpheres[1].xyz; float3 fromCenter2 = wpos.xyz - g_vDirShadowSplitSpheres[2].xyz; float3 fromCenter3 = wpos.xyz - g_vDirShadowSplitSpheres[3].xyz; float4 distances2 = float4(dot(fromCenter0, fromCenter0), dot(fromCenter1, fromCenter1), dot(fromCenter2, fromCenter2), dot(fromCenter3, fromCenter3)); float4 vDirShadowSplitSphereSqRadii; vDirShadowSplitSphereSqRadii.x = g_vDirShadowSplitSpheres[0].w; vDirShadowSplitSphereSqRadii.y = g_vDirShadowSplitSpheres[1].w; vDirShadowSplitSphereSqRadii.z = g_vDirShadowSplitSpheres[2].w; vDirShadowSplitSphereSqRadii.w = g_vDirShadowSplitSpheres[3].w; fixed4 weights = float4(distances2 < vDirShadowSplitSphereSqRadii); weights.yzw = saturate(weights.yzw - weights.xyz); return 4 - dot(weights, float4(4, 3, 2, 1)); } float SampleShadow(uint type, float3 vPositionWs, float3 vPositionToLightDirWs, uint lightIndex) { float flShadowScalar = 1.0; int shadowSplitIndex = 0; if (type == DIRECTIONAL_LIGHT) { shadowSplitIndex = GetSplitSphereIndexForDirshadows(vPositionWs); } else if (type == SPHERE_LIGHT) { float3 absPos = abs(vPositionToLightDirWs); shadowSplitIndex = (vPositionToLightDirWs.z > 0) ? CUBEMAPFACE_NEGATIVE_Z : CUBEMAPFACE_POSITIVE_Z; if (absPos.x > absPos.y) { if (absPos.x > absPos.z) { shadowSplitIndex = (vPositionToLightDirWs.x > 0) ? CUBEMAPFACE_NEGATIVE_X : CUBEMAPFACE_POSITIVE_X; } } else { if (absPos.y > absPos.z) { shadowSplitIndex = (vPositionToLightDirWs.y > 0) ? CUBEMAPFACE_NEGATIVE_Y : CUBEMAPFACE_POSITIVE_Y; } } } flShadowScalar = ComputeShadow_PCF_3x3_Gaussian(vPositionWs.xyz, g_matWorldToShadow[lightIndex * MAX_SHADOWMAP_PER_LIGHT + shadowSplitIndex]); return flShadowScalar; } struct v2f { float4 vertex : SV_POSITION; float2 texcoord : TEXCOORD0; }; v2f vert (float4 vertex : POSITION, float2 texcoord : TEXCOORD0) { v2f o; o.vertex = UnityObjectToClipPos(vertex); o.texcoord = texcoord.xy; return o; } half4 frag (v2f i) : SV_Target { uint2 pixCoord = ((uint2) i.vertex.xy); uint iWidth; uint iHeight; _CameraDepthTexture.GetDimensions(iWidth, iHeight); uint nrTilesX = (iWidth+15)/16; uint nrTilesY = (iHeight+15)/16; uint2 tileIDX = pixCoord / 16; float zbufDpth = FetchDepth(_CameraDepthTexture, pixCoord.xy).x; float linDepth = GetLinearDepth(zbufDpth); uint numLights=0, start=0; GetLightCountAndStart(start, numLights, tileIDX, nrTilesX, nrTilesY, linDepth); float3 c = ExecuteLightList(pixCoord, start, numLights, linDepth); //c = OverlayHeatMap(numLights, c); return float4(c,1.0); } struct StandardData { float3 specularColor; float3 diffuseColor; float3 normalWorld; float smoothness; }; StandardData UnityStandardDataFromGbuffer(float4 gbuffer0, float4 gbuffer1, float4 gbuffer2) { StandardData data; data.normalWorld = normalize(2*gbuffer2.xyz-1); data.smoothness = gbuffer1.a; data.diffuseColor = gbuffer0.xyz; data.specularColor = gbuffer1.xyz; float ao = gbuffer0.a; return data; } float3 ExecuteLightList(uint2 pixCoord, uint start, uint numLights, float linDepth) { float3 vP = GetViewPosFromLinDepth(float2(pixCoord.x+0.5, pixCoord.y+0.5), linDepth); float3 vWSpaceVDir = normalize(mul((float3x3) g_mViewToWorld, -vP).xyz); //unity_CameraToWorld float4 gbuffer0 = _CameraGBufferTexture0.Load( uint3(pixCoord.xy, 0) ); float4 gbuffer1 = _CameraGBufferTexture1.Load( uint3(pixCoord.xy, 0) ); float4 gbuffer2 = _CameraGBufferTexture2.Load( uint3(pixCoord.xy, 0) ); StandardData data = UnityStandardDataFromGbuffer(gbuffer0, gbuffer1, gbuffer2); float oneMinusReflectivity = 1.0 - SpecularStrength(data.specularColor.rgb); UnityIndirect ind; UNITY_INITIALIZE_OUTPUT(UnityIndirect, ind); ind.diffuse = 0; ind.specular = 0; float3 ints = 0; uint l=0; float3 vPositionWs = mul(g_mViewToWorld, float4(vP, 1)); for (int i = 0; i < g_nDirLights; i++) { DirectionalLight lightData = g_dirLightData[i]; float atten = 1; [branch] if (lightData.uShadowLightIndex != 0xffffffff) { float shadowScalar = SampleShadow(DIRECTIONAL_LIGHT, vPositionWs, 0, lightData.uShadowLightIndex); atten *= shadowScalar; } UnityLight light; light.color.xyz = lightData.vCol.xyz * atten; light.dir.xyz = mul((float3x3) g_mViewToWorld, -lightData.vLaxisZ).xyz; ints += UNITY_BRDF_PBS(data.diffuseColor, data.specularColor, oneMinusReflectivity, data.smoothness, data.normalWorld, vWSpaceVDir, light, ind); } // we need this outer loop for when we cannot assume a wavefront is 64 wide // since in this case we cannot assume the lights will remain sorted by type // during processing in lightlist_cs.hlsl #if !defined(XBONE) && !defined(PLAYSTATION4) while(l0.0); // finally apply this to the dist att. const bool bHasShadow = (lgtDat.flags&HAS_SHADOW)!=0; [branch]if(bHasShadow) { float shadowScalar = SampleShadow(SPOT_LIGHT, vPositionWs, 0, lgtDat.uShadowLightIndex); atten *= shadowScalar; } UnityLight light; light.color.xyz = lgtDat.vCol.xyz*atten*angularAtt.xyz; light.dir.xyz = mul((float3x3) g_mViewToWorld, vL).xyz; //unity_CameraToWorld ints += UNITY_BRDF_PBS (data.diffuseColor, data.specularColor, oneMinusReflectivity, data.smoothness, data.normalWorld, vWSpaceVDir, light, ind); ++l; uIndex = l=MAX_TYPES) ++l; if(uLgtType!=SPOT_LIGHT && uLgtType!=SPHERE_LIGHT) ++l; #endif } return ints; } float3 OverlayHeatMap(uint uNumLights, float3 c) { ///////////////////////////////////////////////////////////////////// // const float4 kRadarColors[12] = { float4(0.0,0.0,0.0,0.0), // black float4(0.0,0.0,0.6,0.5), // dark blue float4(0.0,0.0,0.9,0.5), // blue float4(0.0,0.6,0.9,0.5), // light blue float4(0.0,0.9,0.9,0.5), // cyan float4(0.0,0.9,0.6,0.5), // blueish green float4(0.0,0.9,0.0,0.5), // green float4(0.6,0.9,0.0,0.5), // yellowish green float4(0.9,0.9,0.0,0.5), // yellow float4(0.9,0.6,0.0,0.5), // orange float4(0.9,0.0,0.0,0.5), // red float4(1.0,0.0,0.0,0.9) // strong red }; float fMaxNrLightsPerTile = 24; int nColorIndex = uNumLights==0 ? 0 : (1 + (int) floor(10 * (log2((float)uNumLights) / log2(fMaxNrLightsPerTile))) ); nColorIndex = nColorIndex<0 ? 0 : nColorIndex; float4 col = nColorIndex>11 ? float4(1.0,1.0,1.0,1.0) : kRadarColors[nColorIndex]; return lerp(c, pow(col.xyz, 2.2), 0.3*col.w); } ENDCG } } Fallback Off }