浏览代码

Merge pull request #348 from Unity-Technologies/Rename-shaderopaque-deferred.compute

HDRenderPipeline: Rename ShadeOpaque => deferred.compute + AO can affect direct lighting
/RenderPassXR_Sandbox
GitHub 8 年前
当前提交
d86ba083
共有 11 个文件被更改,包括 323 次插入336 次删除
  1. 4
      Assets/GraphicsTests/RenderPipeline/HDRenderPipeline/HDRPAsset/HDRenderPipelineResourcesTest.asset
  2. 27
      Assets/ScriptableRenderPipeline/HDRenderPipeline/Editor/HDRenderPipelineInspector.cs
  3. 4
      Assets/ScriptableRenderPipeline/HDRenderPipeline/Lighting/AmbientOcclusion/ScreenSpaceAmbientOcclusion.cs
  4. 6
      Assets/ScriptableRenderPipeline/HDRenderPipeline/Lighting/AmbientOcclusion/ScreenSpaceAmbientOcclusionSettings.cs
  5. 104
      Assets/ScriptableRenderPipeline/HDRenderPipeline/Lighting/TilePass/TilePass.cs
  6. 10
      Assets/ScriptableRenderPipeline/HDRenderPipeline/Lighting/TilePass/TilePass.hlsl
  7. 168
      Assets/ScriptableRenderPipeline/HDRenderPipeline/Lighting/TilePass/TilePassLoop.hlsl
  8. 4
      Assets/ScriptableRenderPipeline/HDRenderPipeline/RenderPipelineResources/RenderPipelineResources.cs
  9. 166
      Assets/ScriptableRenderPipeline/HDRenderPipeline/Lighting/TilePass/Deferred.compute
  10. 166
      Assets/ScriptableRenderPipeline/HDRenderPipeline/Lighting/TilePass/shadeopaque.compute
  11. 0
      /Assets/ScriptableRenderPipeline/HDRenderPipeline/Lighting/TilePass/Deferred.compute.meta

4
Assets/GraphicsTests/RenderPipeline/HDRenderPipeline/HDRPAsset/HDRenderPipelineResourcesTest.asset


type: 3}
buildMaterialFlagsShader: {fileID: 7200000, guid: fb3eda953cd6e634e877fb777be2cd08,
type: 3}
shadeOpaqueShader: {fileID: 7200000, guid: 0b64f79746d2daf4198eaf6eab9af259, type: 3}
deferredComputeShader: {fileID: 7200000, guid: 0b64f79746d2daf4198eaf6eab9af259,
type: 3}
cameraMotionVectors: {fileID: 4800000, guid: 035941b63024d1943af48811c1db20d9, type: 3}
blitCubemap: {fileID: 4800000, guid: d05913e251bed7a4992c921c62e1b647, type: 3}
buildProbabilityTables: {fileID: 7200000, guid: b9f26cf340afe9145a699753531b2a4c,
type: 3}

27
Assets/ScriptableRenderPipeline/HDRenderPipeline/Editor/HDRenderPipelineInspector.cs


EditorGUI.BeginChangeCheck();
EditorGUILayout.PropertyField(m_enableTileAndCluster, styles.enableTileAndCluster);
EditorGUILayout.PropertyField(m_enableComputeLightEvaluation, styles.enableComputeLightEvaluation);
EditorGUILayout.PropertyField(m_enableComputeLightVariants, styles.enableComputeLightVariants);
EditorGUILayout.PropertyField(m_enableComputeMaterialVariants, styles.enableComputeMaterialVariants);
EditorGUILayout.PropertyField(m_enableClustered, styles.enableClustered);
EditorGUILayout.PropertyField(m_enableFptlForOpaqueWhenClustered, styles.enableFptlForOpaqueWhenClustered);
EditorGUILayout.PropertyField(m_enableBigTilePrepass, styles.enableBigTilePrepass);
if (m_enableTileAndCluster.boolValue)
{
EditorGUI.indentLevel++;
EditorGUILayout.PropertyField(m_enableBigTilePrepass, styles.enableBigTilePrepass);
EditorGUILayout.PropertyField(m_enableClustered, styles.enableClustered);
if (m_enableClustered.boolValue)
{
EditorGUI.indentLevel++;
EditorGUILayout.PropertyField(m_enableFptlForOpaqueWhenClustered, styles.enableFptlForOpaqueWhenClustered);
EditorGUI.indentLevel--;
}
EditorGUILayout.PropertyField(m_enableComputeLightEvaluation, styles.enableComputeLightEvaluation);
if (m_enableComputeLightEvaluation.boolValue)
{
EditorGUI.indentLevel++;
EditorGUILayout.PropertyField(m_enableComputeLightVariants, styles.enableComputeLightVariants);
EditorGUILayout.PropertyField(m_enableComputeMaterialVariants, styles.enableComputeMaterialVariants);
EditorGUI.indentLevel--;
}
}
if (EditorGUI.EndChangeCheck())
{

4
Assets/ScriptableRenderPipeline/HDRenderPipeline/Lighting/AmbientOcclusion/ScreenSpaceAmbientOcclusion.cs


if (settings.enable == false || isForward)
{
cmd.SetGlobalTexture(Uniforms._AOBuffer, UnityEngine.Rendering.PostProcessing.RuntimeUtilities.blackTexture); // Neutral is black, see the comment in the shaders
cmd.SetGlobalFloat("_AmbientOcclusionDirectLightStrenght", 0.0f);
return;
}

Utilities.DrawFullScreen(cmd, m_Material, Uniforms._AOBuffer, null, 3);
cmd.ReleaseTemporaryRT(Uniforms._TempTex1);
// Setup texture for lighting pass (automagic of unity)
// Setup texture for lighting pass (automatic of unity)
cmd.SetGlobalFloat("_AmbientOcclusionDirectLightStrenght", settings.affectDirectLigthingStrenght);
hdRP.PushFullScreenDebugTexture(cmd, Uniforms._AOBuffer, hdCamera.camera, renderContext, FullScreenDebugMode.SSAO);
}
}

6
Assets/ScriptableRenderPipeline/HDRenderPipeline/Lighting/AmbientOcclusion/ScreenSpaceAmbientOcclusionSettings.cs


[SerializeField]
bool m_Enable;
[SerializeField, Range(0, 1)]
float m_AffectDirectLigthingStrenght;
[SerializeField, Range(0, 2)]
float m_Intensity;
[SerializeField]

bool m_Downsampling;
public bool enable { set { m_Enable = value; } get { return m_Enable; } }
public float affectDirectLigthingStrenght { set { m_AffectDirectLigthingStrenght = value; OnValidate(); } get { return m_AffectDirectLigthingStrenght; } }
public float intensity { set { m_Intensity = value; OnValidate(); } get { return m_Intensity; } }
public float radius { set { m_Radius = value; OnValidate(); } get { return m_Radius; } }
public int sampleCount { set { m_SampleCount = value; OnValidate(); } get { return m_SampleCount; } }

{
m_AffectDirectLigthingStrenght = Mathf.Clamp(m_AffectDirectLigthingStrenght, 0, 1);
m_Intensity = Mathf.Clamp(m_Intensity, 0, 2);
m_Radius = Mathf.Max(0, m_Radius);
m_SampleCount = Mathf.Clamp(m_SampleCount, 1, 32);

{
m_Enable = false,
m_AffectDirectLigthingStrenght = 0.0f,
m_Intensity = 1.0f,
m_Radius = 0.5f,
m_SampleCount = 8,

104
Assets/ScriptableRenderPipeline/HDRenderPipeline/Lighting/TilePass/TilePass.cs


private ComputeShader buildMaterialFlagsShader { get { return m_Resources.buildMaterialFlagsShader; } }
private ComputeShader buildDispatchIndirectShader { get { return m_Resources.buildDispatchIndirectShader; } }
private ComputeShader clearDispatchIndirectShader { get { return m_Resources.clearDispatchIndirectShader; } }
private ComputeShader shadeOpaqueShader { get { return m_Resources.shadeOpaqueShader; } }
private ComputeShader deferredComputeShader { get { return m_Resources.deferredComputeShader; } }
static int s_GenAABBKernel;
static int s_GenListPerTileKernel;

s_BuildMaterialFlagsOrKernel = buildMaterialFlagsShader.FindKernel("MaterialFlagsGen_Or");
s_BuildMaterialFlagsWriteKernel = buildMaterialFlagsShader.FindKernel("MaterialFlagsGen_Write");
s_shadeOpaqueDirectClusteredKernel = shadeOpaqueShader.FindKernel("ShadeOpaque_Direct_Clustered");
s_shadeOpaqueDirectFptlKernel = shadeOpaqueShader.FindKernel("ShadeOpaque_Direct_Fptl");
s_shadeOpaqueDirectClusteredDebugDisplayKernel = shadeOpaqueShader.FindKernel("ShadeOpaque_Direct_Clustered_DebugDisplay");
s_shadeOpaqueDirectFptlDebugDisplayKernel = shadeOpaqueShader.FindKernel("ShadeOpaque_Direct_Fptl_DebugDisplay");
s_shadeOpaqueDirectClusteredKernel = deferredComputeShader.FindKernel("Deferred_Direct_Clustered");
s_shadeOpaqueDirectFptlKernel = deferredComputeShader.FindKernel("Deferred_Direct_Fptl");
s_shadeOpaqueDirectClusteredDebugDisplayKernel = deferredComputeShader.FindKernel("Deferred_Direct_Clustered_DebugDisplay");
s_shadeOpaqueDirectFptlDebugDisplayKernel = deferredComputeShader.FindKernel("Deferred_Direct_Fptl_DebugDisplay");
s_shadeOpaqueIndirectClusteredKernels[variant] = shadeOpaqueShader.FindKernel("ShadeOpaque_Indirect_Clustered_Variant" + variant);
s_shadeOpaqueIndirectFptlKernels[variant] = shadeOpaqueShader.FindKernel("ShadeOpaque_Indirect_Fptl_Variant" + variant);
s_shadeOpaqueIndirectClusteredKernels[variant] = deferredComputeShader.FindKernel("Deferred_Indirect_Clustered_Variant" + variant);
s_shadeOpaqueIndirectFptlKernels[variant] = deferredComputeShader.FindKernel("Deferred_Indirect_Fptl_Variant" + variant);
}
s_LightList = null;

Vector4 zbufferParams = Shader.GetGlobalVector("_ZBufferParams");
Vector4 unity_OrthoParams = Shader.GetGlobalVector("unity_OrthoParams");
int envLightSkyEnabled = Shader.GetGlobalInt("_EnvLightSkyEnabled");
float ambientOcclusionDirectLightStrenght = Shader.GetGlobalFloat("_AmbientOcclusionDirectLightStrenght");
int enableSSSAndTransmission = Shader.GetGlobalInt("_EnableSSSAndTransmission");
int texturingModeFlags = Shader.GetGlobalInt("_TexturingModeFlags");

// Pass global parameters to compute shader
// TODO: get rid of this by making global parameters visible to compute shaders
PushGlobalParams(camera, cmd, shadeOpaqueShader, kernel);
hdCamera.SetupComputeShader(shadeOpaqueShader, cmd);
PushGlobalParams(camera, cmd, deferredComputeShader, kernel);
hdCamera.SetupComputeShader(deferredComputeShader, cmd);
cmd.SetComputeIntParam(shadeOpaqueShader, "_DebugViewMaterial", debugViewMaterial);
cmd.SetComputeIntParam(shadeOpaqueShader, "_DebugLightingMode", debugLightingMode);
cmd.SetComputeVectorParam(shadeOpaqueShader, "_DebugLightingAlbedo", debugLightingAlbedo);
cmd.SetComputeVectorParam(shadeOpaqueShader, "_DebugLightingSmoothness", debugLightingSmoothness);
cmd.SetComputeIntParam(deferredComputeShader, "_DebugViewMaterial", debugViewMaterial);
cmd.SetComputeIntParam(deferredComputeShader, "_DebugLightingMode", debugLightingMode);
cmd.SetComputeVectorParam(deferredComputeShader, "_DebugLightingAlbedo", debugLightingAlbedo);
cmd.SetComputeVectorParam(deferredComputeShader, "_DebugLightingSmoothness", debugLightingSmoothness);
cmd.SetComputeBufferParam(shadeOpaqueShader, kernel, "g_vLightListGlobal", bUseClusteredForDeferred ? s_PerVoxelLightLists : s_LightList);
cmd.SetComputeBufferParam(deferredComputeShader, kernel, "g_vLightListGlobal", bUseClusteredForDeferred ? s_PerVoxelLightLists : s_LightList);
cmd.SetComputeTextureParam(shadeOpaqueShader, kernel, "_MainDepthTexture", depthTexture);
cmd.SetComputeTextureParam(shadeOpaqueShader, kernel, "_GBufferTexture0", gbufferTexture0);
cmd.SetComputeTextureParam(shadeOpaqueShader, kernel, "_GBufferTexture1", gbufferTexture1);
cmd.SetComputeTextureParam(shadeOpaqueShader, kernel, "_GBufferTexture2", gbufferTexture2);
cmd.SetComputeTextureParam(shadeOpaqueShader, kernel, "_GBufferTexture3", gbufferTexture3);
cmd.SetComputeTextureParam(shadeOpaqueShader, kernel, "_AmbientOcclusionTexture", ambientOcclusionTexture);
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "_MainDepthTexture", depthTexture);
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "_GBufferTexture0", gbufferTexture0);
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "_GBufferTexture1", gbufferTexture1);
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "_GBufferTexture2", gbufferTexture2);
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "_GBufferTexture3", gbufferTexture3);
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "_AmbientOcclusionTexture", ambientOcclusionTexture);
cmd.SetComputeTextureParam(shadeOpaqueShader, kernel, "_LtcData", ltcData);
cmd.SetComputeTextureParam(shadeOpaqueShader, kernel, "_PreIntegratedFGD", preIntegratedFGD);
cmd.SetComputeTextureParam(shadeOpaqueShader, kernel, "_LtcGGXMatrix", ltcGGXMatrix);
cmd.SetComputeTextureParam(shadeOpaqueShader, kernel, "_LtcDisneyDiffuseMatrix", ltcDisneyDiffuseMatrix);
cmd.SetComputeTextureParam(shadeOpaqueShader, kernel, "_LtcMultiGGXFresnelDisneyDiffuse", ltcMultiGGXFresnelDisneyDiffuse);
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "_LtcData", ltcData);
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "_PreIntegratedFGD", preIntegratedFGD);
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "_LtcGGXMatrix", ltcGGXMatrix);
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "_LtcDisneyDiffuseMatrix", ltcDisneyDiffuseMatrix);
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "_LtcMultiGGXFresnelDisneyDiffuse", ltcMultiGGXFresnelDisneyDiffuse);
cmd.SetComputeMatrixParam(shadeOpaqueShader, "g_mInvScrProjection", invScrProjection);
cmd.SetComputeIntParam(shadeOpaqueShader, "_UseTileLightList", useTileLightList);
cmd.SetComputeMatrixParam(deferredComputeShader, "g_mInvScrProjection", invScrProjection);
cmd.SetComputeIntParam(deferredComputeShader, "_UseTileLightList", useTileLightList);
cmd.SetComputeVectorParam(shadeOpaqueShader, "_Time", time);
cmd.SetComputeVectorParam(shadeOpaqueShader, "_SinTime", sinTime);
cmd.SetComputeVectorParam(shadeOpaqueShader, "_CosTime", cosTime);
cmd.SetComputeVectorParam(shadeOpaqueShader, "unity_DeltaTime", unity_DeltaTime);
cmd.SetComputeVectorParam(shadeOpaqueShader, "_WorldSpaceCameraPos", worldSpaceCameraPos);
cmd.SetComputeVectorParam(shadeOpaqueShader, "_ProjectionParams", projectionParams);
cmd.SetComputeVectorParam(shadeOpaqueShader, "_ScreenParams", screenParams);
cmd.SetComputeVectorParam(shadeOpaqueShader, "_ZBufferParams", zbufferParams);
cmd.SetComputeVectorParam(shadeOpaqueShader, "unity_OrthoParams", unity_OrthoParams);
cmd.SetComputeIntParam(shadeOpaqueShader, "_EnvLightSkyEnabled", envLightSkyEnabled);
cmd.SetComputeVectorParam(deferredComputeShader, "_Time", time);
cmd.SetComputeVectorParam(deferredComputeShader, "_SinTime", sinTime);
cmd.SetComputeVectorParam(deferredComputeShader, "_CosTime", cosTime);
cmd.SetComputeVectorParam(deferredComputeShader, "unity_DeltaTime", unity_DeltaTime);
cmd.SetComputeVectorParam(deferredComputeShader, "_WorldSpaceCameraPos", worldSpaceCameraPos);
cmd.SetComputeVectorParam(deferredComputeShader, "_ProjectionParams", projectionParams);
cmd.SetComputeVectorParam(deferredComputeShader, "_ScreenParams", screenParams);
cmd.SetComputeVectorParam(deferredComputeShader, "_ZBufferParams", zbufferParams);
cmd.SetComputeVectorParam(deferredComputeShader, "unity_OrthoParams", unity_OrthoParams);
cmd.SetComputeIntParam(deferredComputeShader, "_EnvLightSkyEnabled", envLightSkyEnabled);
cmd.SetComputeFloatParam(deferredComputeShader, "_AmbientOcclusionDirectLightStrenght", ambientOcclusionDirectLightStrenght);
cmd.SetComputeTextureParam(shadeOpaqueShader, kernel, "_IESArray", IESArrayTexture ? IESArrayTexture : m_DefaultTexture2DArray);
cmd.SetComputeTextureParam(shadeOpaqueShader, kernel, "_SkyTexture", skyTexture ? skyTexture : m_DefaultTexture2DArray);
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "_IESArray", IESArrayTexture ? IESArrayTexture : m_DefaultTexture2DArray);
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "_SkyTexture", skyTexture ? skyTexture : m_DefaultTexture2DArray);
cmd.SetComputeIntParam( shadeOpaqueShader, "_EnableSSSAndTransmission", enableSSSAndTransmission);
cmd.SetComputeIntParam( shadeOpaqueShader, "_TexturingModeFlags", texturingModeFlags);
cmd.SetComputeIntParam( shadeOpaqueShader, "_TransmissionFlags", transmissionFlags);
cmd.SetComputeVectorArrayParam(shadeOpaqueShader, "_ThicknessRemaps", thicknessRemaps);
cmd.SetComputeIntParam( deferredComputeShader, "_EnableSSSAndTransmission", enableSSSAndTransmission);
cmd.SetComputeIntParam( deferredComputeShader, "_TexturingModeFlags", texturingModeFlags);
cmd.SetComputeIntParam( deferredComputeShader, "_TransmissionFlags", transmissionFlags);
cmd.SetComputeVectorArrayParam(deferredComputeShader, "_ThicknessRemaps", thicknessRemaps);
cmd.SetComputeVectorArrayParam(shadeOpaqueShader, "_ShapeParams", shapeParams);
cmd.SetComputeVectorArrayParam(shadeOpaqueShader, "_TransmissionTints", transmissionTints);
cmd.SetComputeVectorArrayParam(deferredComputeShader, "_ShapeParams", shapeParams);
cmd.SetComputeVectorArrayParam(deferredComputeShader, "_TransmissionTints", transmissionTints);
cmd.SetComputeTextureParam(shadeOpaqueShader, kernel, "specularLightingUAV", colorBuffers[0]);
cmd.SetComputeTextureParam(shadeOpaqueShader, kernel, "diffuseLightingUAV", colorBuffers[1]);
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "specularLightingUAV", colorBuffers[0]);
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "diffuseLightingUAV", colorBuffers[1]);
cmd.SetComputeIntParam(shadeOpaqueShader, "g_TileListOffset", variant * numTiles);
cmd.SetComputeBufferParam(shadeOpaqueShader, kernel, "g_TileList", s_TileList);
cmd.DispatchCompute(shadeOpaqueShader, kernel, s_DispatchIndirectBuffer, (uint)variant * 3 * sizeof(uint));
cmd.SetComputeIntParam(deferredComputeShader, "g_TileListOffset", variant * numTiles);
cmd.SetComputeBufferParam(deferredComputeShader, kernel, "g_TileList", s_TileList);
cmd.DispatchCompute(deferredComputeShader, kernel, s_DispatchIndirectBuffer, (uint)variant * 3 * sizeof(uint));
cmd.DispatchCompute(shadeOpaqueShader, kernel, numTilesX, numTilesY, 1);
cmd.DispatchCompute(deferredComputeShader, kernel, numTilesX, numTilesY, 1);
}
}
}

10
Assets/ScriptableRenderPipeline/HDRenderPipeline/Lighting/TilePass/TilePass.hlsl


TEXTURECUBE(_SkyTexture);
SAMPLERCUBE(sampler_SkyTexture); // NOTE: Sampler could be share here with _EnvTextures. Don't know if the shader compiler will complain...
TEXTURE2D(_AmbientOcclusionTexture);
CBUFFER_START(UnityPerLightLoop)
uint _DirectionalLightCount;
uint _PunctualLightCount;

int _EnvLightSkyEnabled; // TODO: make it a bool
float _AmbientOcclusionDirectLightStrenght;
CBUFFER_END
struct LightLoopContext

return SAMPLE_TEXTURECUBE_LOD(_SkyTexture, sampler_SkyTexture, texCoord, lod);
}
}
//-----------------------------------------------------------------------------
// AmbientOcclusion
// ----------------------------------------------------------------------------
TEXTURE2D(_AmbientOcclusionTexture);

168
Assets/ScriptableRenderPipeline/HDRenderPipeline/Lighting/TilePass/TilePassLoop.hlsl


return (_UseTileLightList ? ((value >> ((lightIndexPlusOne & 1) * DWORD_PER_TILE)) & 0xffff) : value);
}
#endif
#endif // USE_FPTL_LIGHTLIST
#else
uint GetTileSize()
{
return 1;
}
#endif // LIGHTLOOP_TILE_PASS
// bakeDiffuseLighting is part of the prototype so a user is able to implement a "base pass" with GI and multipass direct light (aka old unity rendering path)
void LightLoop( float3 V, PositionInputs posInput, PreLightData prelightData, BSDFData bsdfData, float3 bakeDiffuseLighting, uint featureFlags,

uint i = 0; // Declare once to avoid the D3D11 compiler warning.
if(featureFlags & LIGHTFEATUREFLAGS_DIRECTIONAL)
if (featureFlags & LIGHTFEATUREFLAGS_DIRECTIONAL)
{
for(i = 0; i < _DirectionalLightCount; ++i)
{

}
}
if(featureFlags & LIGHTFEATUREFLAGS_PUNCTUAL)
if (featureFlags & LIGHTFEATUREFLAGS_PUNCTUAL)
#ifdef LIGHTLOOP_TILE_PASS
// TODO: Convert the for loop below to a while on each type as we know we are sorted!
uint punctualLightStart;
uint punctualLightCount;

diffuseLighting += localDiffuseLighting;
specularLighting += localSpecularLighting;
}
#else
for (i = 0; i < _PunctualLightCount; ++i)
{
float3 localDiffuseLighting, localSpecularLighting;
EvaluateBSDF_Punctual( context, V, posInput, prelightData, _LightDatas[i], bsdfData,
localDiffuseLighting, localSpecularLighting);
diffuseLighting += localDiffuseLighting;
specularLighting += localSpecularLighting;
}
#endif
if(featureFlags & LIGHTFEATUREFLAGS_AREA)
if (featureFlags & LIGHTFEATUREFLAGS_AREA)
#ifdef LIGHTLOOP_TILE_PASS
uint areaLightStart;
uint areaLightCount;
GetCountAndStart(posInput, LIGHTCATEGORY_AREA, areaLightStart, areaLightCount);

i++;
}
#else
for (; i < _PunctualLightCount + _AreaLightCount; ++i)
{
float3 localDiffuseLighting, localSpecularLighting;
EvaluateBSDF_Area( context, V, posInput, prelightData, _LightDatas[i], bsdfData, _LightDatas[i].lightType,
localDiffuseLighting, localSpecularLighting);
diffuseLighting += localDiffuseLighting;
specularLighting += localSpecularLighting;
}
#endif
// TODO: Check the reflection hierarchy, for the current system (matching legacy unity) we must sort from bigger solid angle to lower (lower override bigger). So begging by sky
// TODO: Change the way it is done by reversing the order, from smaller solid angle to bigger, so we can early out when the weight is 1.
// Only apply sky IBL if the sky texture is available.
if(featureFlags & LIGHTFEATUREFLAGS_SKY)
{

}
}
#ifdef LIGHTLOOP_TILE_PASS
uint envLightStart;
uint envLightCount;
GetCountAndStart(posInput, LIGHTCATEGORY_ENV, envLightStart, envLightCount);

iblDiffuseLighting = lerp(iblDiffuseLighting, localDiffuseLighting, weight.x); // Should be remove by the compiler if it is smart as all is constant 0
iblSpecularLighting = lerp(iblSpecularLighting, localSpecularLighting, weight.y);
}
}
diffuseLighting += iblDiffuseLighting;
specularLighting += iblSpecularLighting;
// Apply GI at the same time as reflection
// Add indirect diffuse + emissive (if any) - Ambient occlusion is multiply by emissive which is wrong but not a big deal
diffuseLighting += bakeDiffuseLighting * context.ambientOcclusion;
ApplyDebug(context, posInput.positionWS, diffuseLighting, specularLighting);
}
#else // LIGHTLOOP_SINGLE_PASS
uint GetTileSize()
{
return 1;
}
// bakeDiffuseLighting is part of the prototype so a user is able to implement a "base pass" with GI and multipass direct light (aka old unity rendering path)
void LightLoop( float3 V, PositionInputs posInput, PreLightData prelightData, BSDFData bsdfData, float3 bakeDiffuseLighting, uint featureFlag,
out float3 diffuseLighting,
out float3 specularLighting)
{
LightLoopContext context;
// Note: When we ImageLoad outside of texture size, the value returned by Load is 0 (Note: On Metal maybe it clamp to value of texture which is also fine)
// We use this property to have a neutral value for AO that doesn't consume a sampler and work also with compute shader (i.e use ImageLoad)
// We store inverse AO so neutral is black. So either we sample inside or outside the texture it return 0 in case of neutral
context.ambientOcclusion = 1.0 - LOAD_TEXTURE2D(_AmbientOcclusionTexture, posInput.unPositionSS).x;
context.sampleShadow = 0;
context.sampleReflection = 0;
context.shadowContext = InitShadowContext();
diffuseLighting = float3(0.0, 0.0, 0.0);
specularLighting = float3(0.0, 0.0, 0.0);
uint i = 0; // Declare once to avoid the D3D11 compiler warning.
for (i = 0; i < _DirectionalLightCount; ++i)
{
float3 localDiffuseLighting, localSpecularLighting;
EvaluateBSDF_Directional(context, V, posInput, prelightData, _DirectionalLightDatas[i], bsdfData,
localDiffuseLighting, localSpecularLighting);
diffuseLighting += localDiffuseLighting;
specularLighting += localSpecularLighting;
}
for (i = 0; i < _PunctualLightCount; ++i)
{
float3 localDiffuseLighting, localSpecularLighting;
EvaluateBSDF_Punctual( context, V, posInput, prelightData, _LightDatas[i], bsdfData,
localDiffuseLighting, localSpecularLighting);
diffuseLighting += localDiffuseLighting;
specularLighting += localSpecularLighting;
}
for (; i < _PunctualLightCount + _AreaLightCount; ++i)
{
float3 localDiffuseLighting, localSpecularLighting;
EvaluateBSDF_Area( context, V, posInput, prelightData, _LightDatas[i], bsdfData, _LightDatas[i].lightType,
localDiffuseLighting, localSpecularLighting);
diffuseLighting += localDiffuseLighting;
specularLighting += localSpecularLighting;
}
#else
// TODO: Check the reflection hierarchy, for the current system (matching legacy unity) we must sort from bigger solid angle to lower (lower override bigger). So begging by sky
// TODO: Change the way it is done by reversing the order, from smaller solid angle to bigger, so we can early out when the weight is 1.
float3 iblDiffuseLighting = float3(0.0, 0.0, 0.0);
float3 iblSpecularLighting = float3(0.0, 0.0, 0.0);
for (i = 0; i < _EnvLightCount; ++i)
{
float3 localDiffuseLighting, localSpecularLighting;
float2 weight;
context.sampleReflection = SINGLE_PASS_CONTEXT_SAMPLE_REFLECTION_PROBES;
EvaluateBSDF_Env(context, V, posInput, prelightData, _EnvLightDatas[i], bsdfData, localDiffuseLighting, localSpecularLighting, weight);
iblDiffuseLighting = lerp(iblDiffuseLighting, localDiffuseLighting, weight.x); // Should be remove by the compiler if it is smart as all is constant 0
iblSpecularLighting = lerp(iblSpecularLighting, localSpecularLighting, weight.y);
}
// Only apply sky IBL if the sky texture is available.
if (_EnvLightSkyEnabled)
{
float3 localDiffuseLighting, localSpecularLighting;
float2 weight;
// The sky is a single cubemap texture separate from the reflection probe texture array (different resolution and compression)
context.sampleReflection = SINGLE_PASS_CONTEXT_SAMPLE_SKY;
EnvLightData envLightSky = InitSkyEnvLightData(0); // The sky data are generated on the fly so the compiler can optimize the code
EvaluateBSDF_Env(context, V, posInput, prelightData, envLightSky, bsdfData, localDiffuseLighting, localSpecularLighting, weight);
iblDiffuseLighting = lerp(iblDiffuseLighting, localDiffuseLighting, weight.x); // Should be remove by the compiler if it is smart as all is constant 0
iblSpecularLighting = lerp(iblSpecularLighting, localSpecularLighting, weight.y);
#endif
for (i = 0; i < _EnvLightCount; ++i)
{
float3 localDiffuseLighting, localSpecularLighting;
float2 weight;
context.sampleReflection = SINGLE_PASS_CONTEXT_SAMPLE_REFLECTION_PROBES;
EvaluateBSDF_Env(context, V, posInput, prelightData, _EnvLightDatas[i], bsdfData, localDiffuseLighting, localSpecularLighting, weight);
iblDiffuseLighting = lerp(iblDiffuseLighting, localDiffuseLighting, weight.x); // Should be remove by the compiler if it is smart as all is constant 0
iblSpecularLighting = lerp(iblSpecularLighting, localSpecularLighting, weight.y);
}
// Apply ambient occlusion on direct lighting based on strenght factor
diffuseLighting *= lerp(1.0, context.ambientOcclusion, _AmbientOcclusionDirectLightStrenght);
// Add indirect diffuse + emissive (if any)
// Apply GI at the same time as reflection
#endif

4
Assets/ScriptableRenderPipeline/HDRenderPipeline/RenderPipelineResources/RenderPipelineResources.cs


instance.buildPerBigTileLightListShader = UnityEditor.AssetDatabase.LoadAssetAtPath<ComputeShader>("Assets/ScriptableRenderPipeline/HDRenderPipeline/Lighting/TilePass/lightlistbuild-bigtile.compute");
instance.buildPerVoxelLightListShader = UnityEditor.AssetDatabase.LoadAssetAtPath<ComputeShader>("Assets/ScriptableRenderPipeline/HDRenderPipeline/Lighting/TilePass/lightlistbuild-clustered.compute");
instance.buildMaterialFlagsShader = UnityEditor.AssetDatabase.LoadAssetAtPath<ComputeShader>("Assets/ScriptableRenderPipeline/HDRenderPipeline/Lighting/TilePass/materialflags.compute");
instance.shadeOpaqueShader = UnityEditor.AssetDatabase.LoadAssetAtPath<ComputeShader>("Assets/ScriptableRenderPipeline/HDRenderPipeline/Lighting/TilePass/shadeopaque.compute");
instance.deferredComputeShader = UnityEditor.AssetDatabase.LoadAssetAtPath<ComputeShader>("Assets/ScriptableRenderPipeline/HDRenderPipeline/Lighting/TilePass/Deferred.compute");
// SceneSettings
// These shaders don't need to be reference by RenderPipelineResource as they are not use at runtime (only to draw in editor)

public ComputeShader buildPerBigTileLightListShader;
public ComputeShader buildPerVoxelLightListShader; // clustered
public ComputeShader buildMaterialFlagsShader;
public ComputeShader shadeOpaqueShader;
public ComputeShader deferredComputeShader;
// SceneSettings
// These shaders don't need to be reference by RenderPipelineResource as they are not use at runtime (only to draw in editor)

166
Assets/ScriptableRenderPipeline/HDRenderPipeline/Lighting/TilePass/Deferred.compute


#pragma kernel Deferred_Direct_Fptl SHADE_OPAQUE_ENTRY=Deferred_Direct_Fptl USE_FPTL_LIGHTLIST
#pragma kernel Deferred_Direct_Fptl_DebugDisplay SHADE_OPAQUE_ENTRY=Deferred_Direct_Fptl_DebugDisplay USE_FPTL_LIGHTLIST DEBUG_DISPLAY
#pragma kernel Deferred_Direct_Clustered SHADE_OPAQUE_ENTRY=Deferred_Direct_Clustered USE_CLUSTERED_LIGHTLIST
#pragma kernel Deferred_Direct_Clustered_DebugDisplay SHADE_OPAQUE_ENTRY=Deferred_Direct_Clustered_DebugDisplay USE_CLUSTERED_LIGHTLIST DEBUG_DISPLAY
#pragma kernel Deferred_Indirect_Fptl_Variant0 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant0 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=0
#pragma kernel Deferred_Indirect_Fptl_Variant1 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant1 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=1
#pragma kernel Deferred_Indirect_Fptl_Variant2 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant2 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=2
#pragma kernel Deferred_Indirect_Fptl_Variant3 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant3 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=3
#pragma kernel Deferred_Indirect_Fptl_Variant4 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant4 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=4
#pragma kernel Deferred_Indirect_Fptl_Variant5 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant5 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=5
#pragma kernel Deferred_Indirect_Fptl_Variant6 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant6 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=6
#pragma kernel Deferred_Indirect_Fptl_Variant7 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant7 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=7
#pragma kernel Deferred_Indirect_Fptl_Variant8 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant8 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=8
#pragma kernel Deferred_Indirect_Fptl_Variant9 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant9 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=9
#pragma kernel Deferred_Indirect_Fptl_Variant10 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant10 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=10
#pragma kernel Deferred_Indirect_Fptl_Variant11 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant11 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=11
#pragma kernel Deferred_Indirect_Fptl_Variant12 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant12 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=12
#pragma kernel Deferred_Indirect_Fptl_Variant13 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant13 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=13
#pragma kernel Deferred_Indirect_Fptl_Variant14 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant14 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=14
#pragma kernel Deferred_Indirect_Fptl_Variant15 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant15 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=15
#pragma kernel Deferred_Indirect_Fptl_Variant16 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant16 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=16
#pragma kernel Deferred_Indirect_Fptl_Variant17 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant17 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=17
#pragma kernel Deferred_Indirect_Fptl_Variant18 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant18 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=18
#pragma kernel Deferred_Indirect_Fptl_Variant19 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant19 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=19
#pragma kernel Deferred_Indirect_Fptl_Variant20 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant20 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=20
#pragma kernel Deferred_Indirect_Fptl_Variant21 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant21 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=21
#pragma kernel Deferred_Indirect_Fptl_Variant22 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant22 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=22
#pragma kernel Deferred_Indirect_Fptl_Variant23 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant23 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=23
#pragma kernel Deferred_Indirect_Fptl_Variant24 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant24 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=24
#pragma kernel Deferred_Indirect_Fptl_Variant25 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant25 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=25
#pragma kernel Deferred_Indirect_Fptl_Variant26 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant26 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=26
#pragma kernel Deferred_Indirect_Fptl_Variant27 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant27 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=27
#pragma kernel Deferred_Indirect_Fptl_Variant28 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant28 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=28
#pragma kernel Deferred_Indirect_Fptl_Variant29 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant29 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=29
#pragma kernel Deferred_Indirect_Fptl_Variant30 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Fptl_Variant30 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=30
// TODO: We should remove these variant for cluster opaque and only keep tile opaque.
#pragma kernel Deferred_Indirect_Clustered_Variant0 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant0 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=0
#pragma kernel Deferred_Indirect_Clustered_Variant1 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant1 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=1
#pragma kernel Deferred_Indirect_Clustered_Variant2 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant2 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=2
#pragma kernel Deferred_Indirect_Clustered_Variant3 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant3 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=3
#pragma kernel Deferred_Indirect_Clustered_Variant4 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant4 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=4
#pragma kernel Deferred_Indirect_Clustered_Variant5 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant5 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=5
#pragma kernel Deferred_Indirect_Clustered_Variant6 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant6 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=6
#pragma kernel Deferred_Indirect_Clustered_Variant7 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant7 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=7
#pragma kernel Deferred_Indirect_Clustered_Variant8 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant8 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=8
#pragma kernel Deferred_Indirect_Clustered_Variant9 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant9 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=9
#pragma kernel Deferred_Indirect_Clustered_Variant10 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant10 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=10
#pragma kernel Deferred_Indirect_Clustered_Variant11 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant11 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=11
#pragma kernel Deferred_Indirect_Clustered_Variant12 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant12 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=12
#pragma kernel Deferred_Indirect_Clustered_Variant13 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant13 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=13
#pragma kernel Deferred_Indirect_Clustered_Variant14 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant14 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=14
#pragma kernel Deferred_Indirect_Clustered_Variant15 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant15 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=15
#pragma kernel Deferred_Indirect_Clustered_Variant16 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant16 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=16
#pragma kernel Deferred_Indirect_Clustered_Variant17 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant17 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=17
#pragma kernel Deferred_Indirect_Clustered_Variant18 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant18 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=18
#pragma kernel Deferred_Indirect_Clustered_Variant19 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant19 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=19
#pragma kernel Deferred_Indirect_Clustered_Variant20 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant20 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=20
#pragma kernel Deferred_Indirect_Clustered_Variant21 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant21 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=21
#pragma kernel Deferred_Indirect_Clustered_Variant22 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant22 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=22
#pragma kernel Deferred_Indirect_Clustered_Variant23 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant23 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=23
#pragma kernel Deferred_Indirect_Clustered_Variant24 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant24 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=24
#pragma kernel Deferred_Indirect_Clustered_Variant25 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant25 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=25
#pragma kernel Deferred_Indirect_Clustered_Variant26 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant26 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=26
#pragma kernel Deferred_Indirect_Clustered_Variant27 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant27 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=27
#pragma kernel Deferred_Indirect_Clustered_Variant28 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant28 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=28
#pragma kernel Deferred_Indirect_Clustered_Variant29 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant29 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=29
#pragma kernel Deferred_Indirect_Clustered_Variant30 SHADE_OPAQUE_ENTRY=Deferred_Indirect_Clustered_Variant30 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=30
#define LIGHTLOOP_TILE_PASS 1
//#pragma enable_d3d11_debug_symbols
//-------------------------------------------------------------------------------------
// Include
//-------------------------------------------------------------------------------------
#include "../../../ShaderLibrary/Common.hlsl"
#include "../../Debug/DebugDisplay.hlsl"
// Note: We have fix as guidelines that we have only one deferred material (with control of GBuffer enabled). Mean a users that add a new
// deferred material must replace the old one here. If in the future we want to support multiple layout (cause a lot of consistency problem),
// the deferred shader will require to use multicompile.
#define UNITY_MATERIAL_LIT // Need to be define before including Material.hlsl
#include "../../ShaderConfig.cs.hlsl"
#include "../../ShaderVariables.hlsl"
#include "../../Lighting/Lighting.hlsl" // This include Material.hlsl
//-------------------------------------------------------------------------------------
// variable declaration
//-------------------------------------------------------------------------------------
DECLARE_GBUFFER_TEXTURE(_GBufferTexture);
RWTexture2D<float3> diffuseLightingUAV;
RWTexture2D<float4> specularLightingUAV;
CBUFFER_START(UnityShadeOpaque)
uint g_TileListOffset;
CBUFFER_END
#if USE_INDIRECT
StructuredBuffer<uint> g_TileList;
// Indirect
[numthreads(16, 16, 1)]
void SHADE_OPAQUE_ENTRY(uint2 groupThreadId : SV_GroupThreadID, uint groupId : SV_GroupID)
{
uint tileIndex = g_TileList[g_TileListOffset + groupId];
uint2 tileCoord = uint2(tileIndex & 0xFFFF, tileIndex >> 16);
uint2 pixelCoord = tileCoord * GetTileSize() + groupThreadId;
PositionInputs posInput = GetPositionInput(pixelCoord.xy, _ScreenSize.zw, tileCoord);
uint featureFlags = TileVariantToFeatureFlags(VARIANT);
#else
// Direct
[numthreads(16, 16, 1)]
void SHADE_OPAQUE_ENTRY(uint2 dispatchThreadId : SV_DispatchThreadID, uint2 groupId : SV_GroupID)
{
uint2 pixelCoord = dispatchThreadId;
PositionInputs posInput = GetPositionInput(pixelCoord.xy, _ScreenSize.zw, groupId);
uint featureFlags = 0xFFFFFFFF;
#endif
float depth = LOAD_TEXTURE2D(_MainDepthTexture, posInput.unPositionSS).x;
// For indirect case: we can still overlap inside a tile with the sky/background, reject it
// Can't rely on stencil as we are in compute shader
// TODO : if we have depth bounds test we could remove such a test ?
if (depth == UNITY_RAW_FAR_CLIP_VALUE)
{
return;
}
UpdatePositionInput(depth, _InvViewProjMatrix, _ViewProjMatrix, posInput);
float3 V = GetWorldSpaceNormalizeViewDir(posInput.positionWS);
FETCH_GBUFFER(gbuffer, _GBufferTexture, posInput.unPositionSS);
BSDFData bsdfData;
float3 bakeDiffuseLighting;
DECODE_FROM_GBUFFER(gbuffer, featureFlags, bsdfData, bakeDiffuseLighting);
PreLightData preLightData = GetPreLightData(V, posInput, bsdfData);
float3 diffuseLighting;
float3 specularLighting;
LightLoop(V, posInput, preLightData, bsdfData, bakeDiffuseLighting, featureFlags, diffuseLighting, specularLighting);
if (_EnableSSSAndTransmission != 0 && bsdfData.materialId == MATERIALID_LIT_SSS)
{
// We SSSSS is enabled with use split lighting.
// SSSSS algorithm need to know which pixels contribute to SSS and which doesn't. We could use the stencil for that but it mean that it will increase the cost of SSSSS
// A simpler solution is to add a slight contribution here that isn't visible (here we chose fp16 min (which is also fp11 and fp10 min).
// The SSSSS algorithm will check if diffuse lighting is black and discard the pixel if it is the case
diffuseLighting.r = max(diffuseLighting.r, HFLT_MIN);
specularLightingUAV[pixelCoord] = float4(specularLighting, 1.0);
diffuseLightingUAV[pixelCoord] = diffuseLighting;
}
else
{
specularLightingUAV[pixelCoord] = float4(diffuseLighting + specularLighting, 1.0);
}
}

166
Assets/ScriptableRenderPipeline/HDRenderPipeline/Lighting/TilePass/shadeopaque.compute


#pragma kernel ShadeOpaque_Direct_Fptl SHADE_OPAQUE_ENTRY=ShadeOpaque_Direct_Fptl USE_FPTL_LIGHTLIST
#pragma kernel ShadeOpaque_Direct_Fptl_DebugDisplay SHADE_OPAQUE_ENTRY=ShadeOpaque_Direct_Fptl_DebugDisplay USE_FPTL_LIGHTLIST DEBUG_DISPLAY
#pragma kernel ShadeOpaque_Direct_Clustered SHADE_OPAQUE_ENTRY=ShadeOpaque_Direct_Clustered USE_CLUSTERED_LIGHTLIST
#pragma kernel ShadeOpaque_Direct_Clustered_DebugDisplay SHADE_OPAQUE_ENTRY=ShadeOpaque_Direct_Clustered_DebugDisplay USE_CLUSTERED_LIGHTLIST DEBUG_DISPLAY
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant0 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant0 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=0
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant1 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant1 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=1
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant2 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant2 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=2
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant3 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant3 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=3
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant4 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant4 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=4
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant5 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant5 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=5
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant6 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant6 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=6
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant7 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant7 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=7
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant8 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant8 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=8
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant9 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant9 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=9
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant10 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant10 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=10
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant11 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant11 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=11
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant12 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant12 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=12
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant13 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant13 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=13
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant14 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant14 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=14
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant15 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant15 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=15
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant16 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant16 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=16
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant17 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant17 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=17
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant18 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant18 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=18
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant19 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant19 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=19
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant20 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant20 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=20
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant21 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant21 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=21
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant22 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant22 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=22
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant23 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant23 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=23
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant24 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant24 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=24
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant25 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant25 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=25
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant26 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant26 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=26
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant27 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant27 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=27
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant28 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant28 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=28
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant29 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant29 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=29
#pragma kernel ShadeOpaque_Indirect_Fptl_Variant30 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Fptl_Variant30 USE_FPTL_LIGHTLIST USE_INDIRECT VARIANT=30
// TODO: We should remove these variant for cluster opaque and only keep tile opaque.
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant0 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant0 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=0
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant1 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant1 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=1
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant2 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant2 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=2
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant3 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant3 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=3
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant4 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant4 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=4
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant5 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant5 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=5
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant6 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant6 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=6
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant7 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant7 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=7
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant8 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant8 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=8
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant9 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant9 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=9
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant10 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant10 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=10
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant11 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant11 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=11
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant12 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant12 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=12
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant13 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant13 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=13
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant14 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant14 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=14
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant15 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant15 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=15
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant16 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant16 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=16
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant17 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant17 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=17
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant18 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant18 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=18
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant19 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant19 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=19
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant20 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant20 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=20
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant21 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant21 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=21
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant22 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant22 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=22
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant23 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant23 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=23
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant24 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant24 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=24
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant25 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant25 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=25
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant26 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant26 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=26
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant27 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant27 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=27
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant28 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant28 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=28
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant29 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant29 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=29
#pragma kernel ShadeOpaque_Indirect_Clustered_Variant30 SHADE_OPAQUE_ENTRY=ShadeOpaque_Indirect_Clustered_Variant30 USE_CLUSTERED_LIGHTLIST USE_INDIRECT VARIANT=30
#define LIGHTLOOP_TILE_PASS 1
//#pragma enable_d3d11_debug_symbols
//-------------------------------------------------------------------------------------
// Include
//-------------------------------------------------------------------------------------
#include "../../../ShaderLibrary/Common.hlsl"
#include "../../Debug/DebugDisplay.hlsl"
// Note: We have fix as guidelines that we have only one deferred material (with control of GBuffer enabled). Mean a users that add a new
// deferred material must replace the old one here. If in the future we want to support multiple layout (cause a lot of consistency problem),
// the deferred shader will require to use multicompile.
#define UNITY_MATERIAL_LIT // Need to be define before including Material.hlsl
#include "../../ShaderConfig.cs.hlsl"
#include "../../ShaderVariables.hlsl"
#include "../../Lighting/Lighting.hlsl" // This include Material.hlsl
//-------------------------------------------------------------------------------------
// variable declaration
//-------------------------------------------------------------------------------------
DECLARE_GBUFFER_TEXTURE(_GBufferTexture);
RWTexture2D<float3> diffuseLightingUAV;
RWTexture2D<float4> specularLightingUAV;
CBUFFER_START(UnityShadeOpaque)
uint g_TileListOffset;
CBUFFER_END
#if USE_INDIRECT
StructuredBuffer<uint> g_TileList;
// Indirect
[numthreads(16, 16, 1)]
void SHADE_OPAQUE_ENTRY(uint2 groupThreadId : SV_GroupThreadID, uint groupId : SV_GroupID)
{
uint tileIndex = g_TileList[g_TileListOffset + groupId];
uint2 tileCoord = uint2(tileIndex & 0xFFFF, tileIndex >> 16);
uint2 pixelCoord = tileCoord * GetTileSize() + groupThreadId;
PositionInputs posInput = GetPositionInput(pixelCoord.xy, _ScreenSize.zw, tileCoord);
uint featureFlags = TileVariantToFeatureFlags(VARIANT);
#else
// Direct
[numthreads(16, 16, 1)]
void SHADE_OPAQUE_ENTRY(uint2 dispatchThreadId : SV_DispatchThreadID, uint2 groupId : SV_GroupID)
{
uint2 pixelCoord = dispatchThreadId;
PositionInputs posInput = GetPositionInput(pixelCoord.xy, _ScreenSize.zw, groupId);
uint featureFlags = 0xFFFFFFFF;
#endif
float depth = LOAD_TEXTURE2D(_MainDepthTexture, posInput.unPositionSS).x;
// For indirect case: we can still overlap inside a tile with the sky/background, reject it
// Can't rely on stencil as we are in compute shader
// TODO : if we have depth bounds test we could remove such a test ?
if (depth == UNITY_RAW_FAR_CLIP_VALUE)
{
return;
}
UpdatePositionInput(depth, _InvViewProjMatrix, _ViewProjMatrix, posInput);
float3 V = GetWorldSpaceNormalizeViewDir(posInput.positionWS);
FETCH_GBUFFER(gbuffer, _GBufferTexture, posInput.unPositionSS);
BSDFData bsdfData;
float3 bakeDiffuseLighting;
DECODE_FROM_GBUFFER(gbuffer, featureFlags, bsdfData, bakeDiffuseLighting);
PreLightData preLightData = GetPreLightData(V, posInput, bsdfData);
float3 diffuseLighting;
float3 specularLighting;
LightLoop(V, posInput, preLightData, bsdfData, bakeDiffuseLighting, featureFlags, diffuseLighting, specularLighting);
if (_EnableSSSAndTransmission != 0 && bsdfData.materialId == MATERIALID_LIT_SSS)
{
// We SSSSS is enabled with use split lighting.
// SSSSS algorithm need to know which pixels contribute to SSS and which doesn't. We could use the stencil for that but it mean that it will increase the cost of SSSSS
// A simpler solution is to add a slight contribution here that isn't visible (here we chose fp16 min (which is also fp11 and fp10 min).
// The SSSSS algorithm will check if diffuse lighting is black and discard the pixel if it is the case
diffuseLighting.r = max(diffuseLighting.r, HFLT_MIN);
specularLightingUAV[pixelCoord] = float4(specularLighting, 1.0);
diffuseLightingUAV[pixelCoord] = diffuseLighting;
}
else
{
specularLightingUAV[pixelCoord] = float4(diffuseLighting + specularLighting, 1.0);
}
}

/Assets/ScriptableRenderPipeline/HDRenderPipeline/Lighting/TilePass/shadeopaque.compute.meta → /Assets/ScriptableRenderPipeline/HDRenderPipeline/Lighting/TilePass/Deferred.compute.meta

正在加载...
取消
保存