|
|
|
|
|
|
VoxelLighting EvaluateVoxelLighting(LightLoopContext context, uint featureFlags, PositionInputs posInput, float3 centerWS, |
|
|
|
DualRay ray, float t0, float t1, float dt, float rndVal, float extinction, float asymmetry |
|
|
|
#ifdef USE_CLUSTERED_LIGHTLIST |
|
|
|
, uint clusterIndices[2], float clusterDepths[2]) |
|
|
|
, uint lightClusters[2]) |
|
|
|
#else |
|
|
|
) |
|
|
|
#endif |
|
|
|
|
|
|
return lighting; |
|
|
|
#endif |
|
|
|
|
|
|
|
#ifdef USE_CLUSTERED_LIGHTLIST |
|
|
|
// Loop over 1 or 2 light clusters. |
|
|
|
int cluster = 0; |
|
|
|
do |
|
|
|
if (featureFlags & LIGHTFEATUREFLAGS_PUNCTUAL) |
|
|
|
float tMin = max(t0, ray.strataDirInvViewZ * clusterDepths[cluster]); |
|
|
|
float tMax = t1; |
|
|
|
#ifdef USE_CLUSTERED_LIGHTLIST |
|
|
|
// Iterate over all lights within 2 (not necessarily unique) clusters overlapping the voxel along Z. |
|
|
|
// We need to skip duplicates, but it's not too difficult since lights are sorted by index. |
|
|
|
uint lightStarts[2], lightCounts[2]; |
|
|
|
if (cluster == 0 && (clusterIndices[0] != clusterIndices[1])) |
|
|
|
for (uint k = 0; k < 2; k++) |
|
|
|
tMax = min(t1, ray.strataDirInvViewZ * clusterDepths[1]); |
|
|
|
GetCountAndStartCluster(posInput.tileCoord, lightClusters[k], LIGHTCATEGORY_PUNCTUAL, |
|
|
|
lightStarts[k], lightCounts[k]); |
|
|
|
|
|
|
|
#else // USE_CLUSTERED_LIGHTLIST |
|
|
|
float tMin = t0; |
|
|
|
float tMax = t1; |
|
|
|
#endif // USE_CLUSTERED_LIGHTLIST |
|
|
|
if (featureFlags & LIGHTFEATUREFLAGS_PUNCTUAL) |
|
|
|
uint i = 0, j = 0; |
|
|
|
|
|
|
|
if (i < lightCounts[0] || j < lightCounts[1]) |
|
|
|
uint lightCount, lightStart; |
|
|
|
// At least one of the clusters is non-empty. |
|
|
|
uint lightIndices[2]; |
|
|
|
#ifdef USE_CLUSTERED_LIGHTLIST |
|
|
|
GetCountAndStartCluster(posInput.tileCoord, clusterIndices[cluster], LIGHTCATEGORY_PUNCTUAL, |
|
|
|
lightStart, lightCount); |
|
|
|
#else // USE_CLUSTERED_LIGHTLIST |
|
|
|
lightCount = _PunctualLightCount; |
|
|
|
lightStart = 0; |
|
|
|
#endif // USE_CLUSTERED_LIGHTLIST |
|
|
|
// Fetch two initial indices from both clusters. |
|
|
|
if (i < lightCounts[0]) |
|
|
|
{ |
|
|
|
lightIndices[0] = FetchIndex(lightStarts[0], i); |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
lightIndices[0] = UINT_MAX; |
|
|
|
} |
|
|
|
if (lightCount > 0) |
|
|
|
if (j < lightCounts[1]) |
|
|
|
LightData light = FetchLight(lightStart, 0); |
|
|
|
lightIndices[1] = FetchIndex(lightStarts[1], j); |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
lightIndices[1] = UINT_MAX; |
|
|
|
} |
|
|
|
int i = 0, last = lightCount - 1; |
|
|
|
// Process all punctual lights except for box lights (which are technically not even punctual). |
|
|
|
do |
|
|
|
{ |
|
|
|
// Process lights in order. |
|
|
|
uint lightIndex = min(lightIndices[0], lightIndices[1]); |
|
|
|
|
|
|
|
#else // USE_CLUSTERED_LIGHTLIST |
|
|
|
{ |
|
|
|
uint lightIndex = 0; |
|
|
|
|
|
|
|
// Process all punctual lights except for box lights (which are technically not even punctual). |
|
|
|
for (; lightIndex < _PunctualLightCount; lightIndex++) |
|
|
|
{ |
|
|
|
#endif // USE_CLUSTERED_LIGHTLIST |
|
|
|
|
|
|
|
LightData light = _LightDatas[lightIndex]; |
|
|
|
|
|
|
|
// Process box lights in a separate loop. |
|
|
|
if (light.lightType == GPULIGHTTYPE_PROJECTOR_BOX) { break; } |
|
|
|
|
|
|
|
float tEntr = t0; |
|
|
|
float tExit = t1; |
|
|
|
// Box lights require special handling (see the next while loop). |
|
|
|
while (i <= last && light.lightType != GPULIGHTTYPE_PROJECTOR_BOX) |
|
|
|
bool sampleLight = true; |
|
|
|
|
|
|
|
// Perform ray-cone intersection for pyramid and spot lights. |
|
|
|
if (light.lightType != GPULIGHTTYPE_POINT) |
|
|
|
float tEntr = tMin; |
|
|
|
float tExit = tMax; |
|
|
|
float lenMul = 1; |
|
|
|
|
|
|
|
if (light.lightType == GPULIGHTTYPE_PROJECTOR_PYRAMID) |
|
|
|
{ |
|
|
|
// 'light.right' and 'light.up' vectors are pre-scaled on the CPU |
|
|
|
// s.t. if you were to place them at the distance of 1 directly in front |
|
|
|
// of the light, they would give you the "footprint" of the light. |
|
|
|
// For spot lights, the cone fit is exact. |
|
|
|
// For pyramid lights, however, this is the "inscribed" cone |
|
|
|
// (contained within the pyramid), and we want to intersect |
|
|
|
// the "escribed" cone (which contains the pyramid). |
|
|
|
// Therefore, we have to scale the radii by the sqrt(2). |
|
|
|
lenMul = rsqrt(2); |
|
|
|
} |
|
|
|
|
|
|
|
float3 coneAxisX = lenMul * light.right; |
|
|
|
float3 coneAxisY = lenMul * light.up; |
|
|
|
bool sampleLight = true; |
|
|
|
sampleLight = IntersectRayCone(ray.originWS, ray.strataDirWS, |
|
|
|
light.positionWS, light.forward, |
|
|
|
coneAxisX, coneAxisY, |
|
|
|
t0, t1, tEntr, tExit); |
|
|
|
} |
|
|
|
// Perform ray-cone intersection for pyramid and spot lights. |
|
|
|
if (light.lightType != GPULIGHTTYPE_POINT) |
|
|
|
{ |
|
|
|
float lenMul = 1; |
|
|
|
if (sampleLight) |
|
|
|
{ |
|
|
|
// We are unable to adequately sample features larger |
|
|
|
// than the half of the length of the integration interval |
|
|
|
// divided by the number of temporal samples (7). |
|
|
|
// Therefore, we apply this hack to reduce flickering. |
|
|
|
float hackMinDistSq = Sq(dt * (0.5 / 7)); |
|
|
|
if (light.lightType == GPULIGHTTYPE_PROJECTOR_PYRAMID) |
|
|
|
{ |
|
|
|
// 'light.right' and 'light.up' vectors are pre-scaled on the CPU |
|
|
|
// s.t. if you were to place them at the distance of 1 directly in front |
|
|
|
// of the light, they would give you the "footprint" of the light. |
|
|
|
// For spot lights, the cone fit is exact. |
|
|
|
// For pyramid lights, however, this is the "inscribed" cone |
|
|
|
// (contained within the pyramid), and we want to intersect |
|
|
|
// the "escribed" cone (which contains the pyramid). |
|
|
|
// Therefore, we have to scale the radii by the sqrt(2). |
|
|
|
lenMul = rsqrt(2); |
|
|
|
} |
|
|
|
float t, distSq, rcpPdf; |
|
|
|
ImportanceSamplePunctualLight(rndVal, light.positionWS, |
|
|
|
ray.originWS, ray.strataDirWS, |
|
|
|
tEntr, tExit, t, distSq, rcpPdf, |
|
|
|
hackMinDistSq); |
|
|
|
float3 coneAxisX = lenMul * light.right; |
|
|
|
float3 coneAxisY = lenMul * light.up; |
|
|
|
posInput.positionWS = GetPointAtDistance(ray, t); |
|
|
|
sampleLight = IntersectRayCone(ray.originWS, ray.strataDirWS, |
|
|
|
light.positionWS, light.forward, |
|
|
|
coneAxisX, coneAxisY, |
|
|
|
tMin, tMax, tEntr, tExit); |
|
|
|
} |
|
|
|
float3 lightToSample = posInput.positionWS - light.positionWS; |
|
|
|
float distRcp = rsqrt(distSq); |
|
|
|
float dist = distSq * distRcp; |
|
|
|
float distProj = dot(lightToSample, light.forward); |
|
|
|
float4 distances = float4(dist, distSq, distRcp, distProj); |
|
|
|
float3 L = -lightToSample * distRcp; |
|
|
|
if (sampleLight) |
|
|
|
{ |
|
|
|
// We are unable to adequately sample features larger |
|
|
|
// than the half of the length of the integration interval |
|
|
|
// divided by the number of temporal samples (7). |
|
|
|
// Therefore, we apply this hack to reduce flickering. |
|
|
|
float hackMinDistSq = Sq(dt * (0.5 / 7)); |
|
|
|
float3 color; float attenuation; |
|
|
|
EvaluateLight_Punctual(context, posInput, light, unused, 0, L, lightToSample, |
|
|
|
distances, color, attenuation); |
|
|
|
float t, distSq, rcpPdf; |
|
|
|
ImportanceSamplePunctualLight(rndVal, light.positionWS, |
|
|
|
ray.originWS, ray.strataDirWS, |
|
|
|
tEntr, tExit, t, distSq, rcpPdf, |
|
|
|
hackMinDistSq); |
|
|
|
// Important: |
|
|
|
// Ideally, all scattering calculations should use the stratified versions |
|
|
|
// of the sample position and the ray direction. However, correct reprojection |
|
|
|
// of asymmetrically scattered lighting (affected by an anisotropic phase |
|
|
|
// function) is not possible. We work around this issue by reprojecting |
|
|
|
// lighting not affected by the phase function. This basically removes |
|
|
|
// the phase function from the temporal integration process. It is a hack. |
|
|
|
// The downside is that asymmetry no longer benefits from temporal averaging, |
|
|
|
// and any temporal instability of asymmetry causes causes visible jitter. |
|
|
|
// In order to stabilize the image, we use the voxel center for all |
|
|
|
// asymmetry-related calculations. |
|
|
|
float3 centerL = light.positionWS - centerWS; |
|
|
|
float cosTheta = dot(centerL, ray.centerDirWS) * rsqrt(dot(centerL, centerL)); |
|
|
|
float phase = CornetteShanksPhasePartVarying(asymmetry, cosTheta); |
|
|
|
posInput.positionWS = GetPointAtDistance(ray, t); |
|
|
|
float intensity = attenuation * rcpPdf; |
|
|
|
float3 lightToSample = posInput.positionWS - light.positionWS; |
|
|
|
float distRcp = rsqrt(distSq); |
|
|
|
float dist = distSq * distRcp; |
|
|
|
float distProj = dot(lightToSample, light.forward); |
|
|
|
float4 distances = float4(dist, distSq, distRcp, distProj); |
|
|
|
float3 L = -lightToSample * distRcp; |
|
|
|
// Compute transmittance from 't0' to 't'. |
|
|
|
intensity *= TransmittanceHomogeneousMedium(extinction, t - t0); |
|
|
|
float3 color; float attenuation; |
|
|
|
EvaluateLight_Punctual(context, posInput, light, unused, 0, L, lightToSample, |
|
|
|
distances, color, attenuation); |
|
|
|
// Compute the amount of in-scattered radiance. |
|
|
|
lighting.radianceNoPhase += intensity * color; |
|
|
|
lighting.radianceComplete += phase * intensity * color; |
|
|
|
} |
|
|
|
// Important: |
|
|
|
// Ideally, all scattering calculations should use the stratified versions |
|
|
|
// of the sample position and the ray direction. However, correct reprojection |
|
|
|
// of asymmetrically scattered lighting (affected by an anisotropic phase |
|
|
|
// function) is not possible. We work around this issue by reprojecting |
|
|
|
// lighting not affected by the phase function. This basically removes |
|
|
|
// the phase function from the temporal integration process. It is a hack. |
|
|
|
// The downside is that asymmetry no longer benefits from temporal averaging, |
|
|
|
// and any temporal instability of asymmetry causes causes visible jitter. |
|
|
|
// In order to stabilize the image, we use the voxel center for all |
|
|
|
// asymmetry-related calculations. |
|
|
|
float3 centerL = light.positionWS - centerWS; |
|
|
|
float cosTheta = dot(centerL, ray.centerDirWS) * rsqrt(dot(centerL, centerL)); |
|
|
|
float phase = CornetteShanksPhasePartVarying(asymmetry, cosTheta); |
|
|
|
#ifndef USE_CLUSTERED_LIGHTLIST |
|
|
|
} |
|
|
|
float intensity = attenuation * rcpPdf; |
|
|
|
// Process all box lights. |
|
|
|
for (; lightIndex < _PunctualLightCount; lightIndex++) |
|
|
|
{ |
|
|
|
#else // USE_CLUSTERED_LIGHTLIST |
|
|
|
// Compute transmittance from 't0' to 't'. |
|
|
|
intensity *= TransmittanceHomogeneousMedium(extinction, t - t0); |
|
|
|
// Advance to the next light in one (or both at the same time) clusters. |
|
|
|
if (lightIndex == lightIndices[0]) |
|
|
|
{ |
|
|
|
i++; |
|
|
|
// Compute the amount of in-scattered radiance. |
|
|
|
lighting.radianceNoPhase += intensity * color; |
|
|
|
lighting.radianceComplete += phase * intensity * color; |
|
|
|
if (i < lightCounts[0]) |
|
|
|
{ |
|
|
|
lightIndices[0] = FetchIndex(lightStarts[0], i); |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
lightIndices[0] = UINT_MAX; |
|
|
|
|
|
|
|
light = FetchLight(lightStart, min(++i, last)); |
|
|
|
while (i <= last) // GPULIGHTTYPE_PROJECTOR_BOX |
|
|
|
if (lightIndex == lightIndices[1]) |
|
|
|
light = FetchLight(lightStart, min(++i, last)); |
|
|
|
light.lightType = GPULIGHTTYPE_PROJECTOR_BOX; |
|
|
|
j++; |
|
|
|
// Convert the box light from OBB to AABB. |
|
|
|
// 'light.right' and 'light.up' vectors are pre-scaled on the CPU by (2/w) and (2/h). |
|
|
|
float3x3 rotMat = float3x3(light.right, light.up, light.forward); |
|
|
|
if (j < lightCounts[1]) |
|
|
|
{ |
|
|
|
lightIndices[1] = FetchIndex(lightStarts[1], j); |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
lightIndices[1] = UINT_MAX; |
|
|
|
} |
|
|
|
} |
|
|
|
} while (i < lightCounts[0] || j < lightCounts[1]); |
|
|
|
float3 o = mul(rotMat, ray.originWS - light.positionWS); |
|
|
|
float3 d = mul(rotMat, ray.strataDirWS); |
|
|
|
// Process all box lights. |
|
|
|
while (i < lightCounts[0] || j < lightCounts[1]) |
|
|
|
{ |
|
|
|
// Process lights in order. |
|
|
|
uint lightIndex = min(lightIndices[0], lightIndices[1]); |
|
|
|
float range = light.size.x; |
|
|
|
float3 boxPt0 = float3(-1, -1, 0); |
|
|
|
float3 boxPt1 = float3( 1, 1, range); |
|
|
|
#endif // USE_CLUSTERED_LIGHTLIST |
|
|
|
float tEntr, tExit; |
|
|
|
LightData light = _LightDatas[lightIndex]; |
|
|
|
light.lightType = GPULIGHTTYPE_PROJECTOR_BOX; |
|
|
|
if (IntersectRayAABB(o, d, boxPt0, boxPt1, tMin, tMax, tEntr, tExit)) |
|
|
|
{ |
|
|
|
float tOffset, weight; |
|
|
|
ImportanceSampleHomogeneousMedium(rndVal, extinction, tExit - tEntr, tOffset, weight); |
|
|
|
// Convert the box light from OBB to AABB. |
|
|
|
// 'light.right' and 'light.up' vectors are pre-scaled on the CPU by (2/w) and (2/h). |
|
|
|
float3x3 rotMat = float3x3(light.right, light.up, light.forward); |
|
|
|
float t = tEntr + tOffset; |
|
|
|
posInput.positionWS = GetPointAtDistance(ray, t); |
|
|
|
float3 o = mul(rotMat, ray.originWS - light.positionWS); |
|
|
|
float3 d = mul(rotMat, ray.strataDirWS); |
|
|
|
float3 L = -light.forward; |
|
|
|
float3 lightToSample = posInput.positionWS - light.positionWS; |
|
|
|
float distProj = dot(lightToSample, light.forward); |
|
|
|
float4 distances = float4(1, 1, 1, distProj); |
|
|
|
float range = light.size.x; |
|
|
|
float3 boxPt0 = float3(-1, -1, 0); |
|
|
|
float3 boxPt1 = float3( 1, 1, range); |
|
|
|
float3 color; float attenuation; |
|
|
|
EvaluateLight_Punctual(context, posInput, light, unused, 0, L, lightToSample, |
|
|
|
distances, color, attenuation); |
|
|
|
float tEntr, tExit; |
|
|
|
// Important: |
|
|
|
// Ideally, all scattering calculations should use the stratified versions |
|
|
|
// of the sample position and the ray direction. However, correct reprojection |
|
|
|
// of asymmetrically scattered lighting (affected by an anisotropic phase |
|
|
|
// function) is not possible. We work around this issue by reprojecting |
|
|
|
// lighting not affected by the phase function. This basically removes |
|
|
|
// the phase function from the temporal integration process. It is a hack. |
|
|
|
// The downside is that asymmetry no longer benefits from temporal averaging, |
|
|
|
// and any temporal instability of asymmetry causes causes visible jitter. |
|
|
|
// In order to stabilize the image, we use the voxel center for all |
|
|
|
// asymmetry-related calculations. |
|
|
|
float3 centerL = light.positionWS - centerWS; |
|
|
|
float cosTheta = dot(centerL, ray.centerDirWS) * rsqrt(dot(centerL, centerL)); |
|
|
|
float phase = CornetteShanksPhasePartVarying(asymmetry, cosTheta); |
|
|
|
if (IntersectRayAABB(o, d, boxPt0, boxPt1, t0, t1, tEntr, tExit)) |
|
|
|
{ |
|
|
|
float tOffset, weight; |
|
|
|
ImportanceSampleHomogeneousMedium(rndVal, extinction, tExit - tEntr, tOffset, weight); |
|
|
|
// Note: the 'weight' accounts for transmittance from 'tEntr' to 't'. |
|
|
|
float intensity = attenuation * weight; |
|
|
|
float t = tEntr + tOffset; |
|
|
|
posInput.positionWS = GetPointAtDistance(ray, t); |
|
|
|
|
|
|
|
float3 L = -light.forward; |
|
|
|
float3 lightToSample = posInput.positionWS - light.positionWS; |
|
|
|
float distProj = dot(lightToSample, light.forward); |
|
|
|
float4 distances = float4(1, 1, 1, distProj); |
|
|
|
|
|
|
|
float3 color; float attenuation; |
|
|
|
EvaluateLight_Punctual(context, posInput, light, unused, 0, L, lightToSample, |
|
|
|
distances, color, attenuation); |
|
|
|
|
|
|
|
// Important: |
|
|
|
// Ideally, all scattering calculations should use the stratified versions |
|
|
|
// of the sample position and the ray direction. However, correct reprojection |
|
|
|
// of asymmetrically scattered lighting (affected by an anisotropic phase |
|
|
|
// function) is not possible. We work around this issue by reprojecting |
|
|
|
// lighting not affected by the phase function. This basically removes |
|
|
|
// the phase function from the temporal integration process. It is a hack. |
|
|
|
// The downside is that asymmetry no longer benefits from temporal averaging, |
|
|
|
// and any temporal instability of asymmetry causes causes visible jitter. |
|
|
|
// In order to stabilize the image, we use the voxel center for all |
|
|
|
// asymmetry-related calculations. |
|
|
|
float3 centerL = light.positionWS - centerWS; |
|
|
|
float cosTheta = dot(centerL, ray.centerDirWS) * rsqrt(dot(centerL, centerL)); |
|
|
|
float phase = CornetteShanksPhasePartVarying(asymmetry, cosTheta); |
|
|
|
|
|
|
|
// Note: the 'weight' accounts for transmittance from 'tEntr' to 't'. |
|
|
|
float intensity = attenuation * weight; |
|
|
|
|
|
|
|
// Compute transmittance from 't0' to 'tEntr'. |
|
|
|
intensity *= TransmittanceHomogeneousMedium(extinction, tEntr - t0); |
|
|
|
|
|
|
|
// Compute the amount of in-scattered radiance. |
|
|
|
lighting.radianceNoPhase += intensity * color; |
|
|
|
lighting.radianceComplete += phase * intensity * color; |
|
|
|
} |
|
|
|
|
|
|
|
#ifdef USE_CLUSTERED_LIGHTLIST |
|
|
|
// Advance to the next light in one (or both at the same time) clusters. |
|
|
|
if (lightIndex == lightIndices[0]) |
|
|
|
{ |
|
|
|
i++; |
|
|
|
|
|
|
|
if (i < lightCounts[0]) |
|
|
|
{ |
|
|
|
lightIndices[0] = FetchIndex(lightStarts[0], i); |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
lightIndices[0] = UINT_MAX; |
|
|
|
} |
|
|
|
} |
|
|
|
// Compute transmittance from 't0' to 'tEntr'. |
|
|
|
intensity *= TransmittanceHomogeneousMedium(extinction, tEntr - t0); |
|
|
|
if (lightIndex == lightIndices[1]) |
|
|
|
{ |
|
|
|
j++; |
|
|
|
// Compute the amount of in-scattered radiance. |
|
|
|
lighting.radianceNoPhase += intensity * color; |
|
|
|
lighting.radianceComplete += phase * intensity * color; |
|
|
|
if (j < lightCounts[1]) |
|
|
|
{ |
|
|
|
lightIndices[1] = FetchIndex(lightStarts[1], j); |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
lightIndices[1] = UINT_MAX; |
|
|
|
#endif // USE_CLUSTERED_LIGHTLIST |
|
|
|
#ifdef USE_CLUSTERED_LIGHTLIST |
|
|
|
cluster++; |
|
|
|
// Check whether the voxel is completely inside the light cluster. |
|
|
|
} while ((cluster < 2) && (clusterIndices[0] != clusterIndices[1])); |
|
|
|
#endif // USE_CLUSTERED_LIGHTLIST |
|
|
|
} |
|
|
|
|
|
|
|
return lighting; |
|
|
|
} |
|
|
|
|
|
|
float opticalDepth = 0; |
|
|
|
|
|
|
|
#ifdef USE_CLUSTERED_LIGHTLIST |
|
|
|
// Our voxel is not necessarily completely inside a single light cluster (along Z). |
|
|
|
// Note that Z-binning can solve this problem, as we can iterate over all Z-bins |
|
|
|
// to compute min/max light indices, and then use this range for the entire slice. |
|
|
|
uint clusterIndices[2]; |
|
|
|
float clusterDepths[2]; |
|
|
|
clusterIndices[0] = GetLightClusterIndex(posInput.tileCoord, z0); |
|
|
|
clusterDepths[0] = GetLightClusterMinLinearDepth(posInput.tileCoord, clusterIndices[0]); |
|
|
|
// The voxel can overlap up to 2 light clusters along Z, so we have to iterate over both. |
|
|
|
// TODO: implement Z-binning which makes Z-range queries easy. |
|
|
|
uint lightClusters[2]; |
|
|
|
lightClusters[0] = GetLightClusterIndex(posInput.tileCoord, z0); |
|
|
|
#endif // USE_CLUSTERED_LIGHTLIST |
|
|
|
|
|
|
|
#if defined(SHADER_API_METAL) |
|
|
|
|
|
|
float dt = t1 - t0; |
|
|
|
|
|
|
|
#ifdef USE_CLUSTERED_LIGHTLIST |
|
|
|
clusterIndices[1] = GetLightClusterIndex(posInput.tileCoord, z1); |
|
|
|
clusterDepths[1] = GetLightClusterMinLinearDepth(posInput.tileCoord, clusterIndices[1]); |
|
|
|
lightClusters[1] = GetLightClusterIndex(posInput.tileCoord, z1); |
|
|
|
#endif |
|
|
|
|
|
|
|
// Compute the -exact- position of the center of the voxel. |
|
|
|
|
|
|
VoxelLighting lighting = EvaluateVoxelLighting(context, featureFlags, posInput, centerWS, |
|
|
|
ray, t0, t1, dt, rndVal, extinction, asymmetry |
|
|
|
#ifdef USE_CLUSTERED_LIGHTLIST |
|
|
|
, clusterIndices, clusterDepths); |
|
|
|
, lightClusters); |
|
|
|
#else |
|
|
|
); |
|
|
|
#endif |
|
|
|
|
|
|
// Store the voxel data. |
|
|
|
_VBufferLightingIntegral[voxelCoord] = integral; |
|
|
|
|
|
|
|
z0 = z1; |
|
|
|
clusterIndices[0] = clusterIndices[1]; |
|
|
|
clusterDepths[0] = clusterDepths[1]; |
|
|
|
lightClusters[0] = lightClusters[1]; |
|
|
|
#endif |
|
|
|
} |
|
|
|
} |
|
|
|