浏览代码

Merge branch 'master' into LightUnits

/main
Antoine Lelievre 6 年前
当前提交
a452a9db
共有 108 个文件被更改,包括 21209 次插入16836 次删除
  1. 999
      TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/1102_Unlit_Distortion.png
  2. 999
      TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/1103_Unlit_Distortion_DepthTest.png
  3. 749
      TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/1202_Lit_DoubleSideNormalMode.png
  4. 999
      TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/1204_Lit_Transparent_Fog.png
  5. 999
      TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/1208_Lit_Displacement_POM.png
  6. 999
      TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/1209_Lit_Displacement_Vertex.png
  7. 999
      TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/1210_Lit_BentNormal.png
  8. 790
      TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/1212_Lit_Emission.png
  9. 999
      TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/1302_SSS_MaxRadius.png
  10. 999
      TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/1303_SSS_Pre-Post.png
  11. 999
      TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/2001_Dynamic_Directional.png
  12. 999
      TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/2002_Dynamic_Mix.png
  13. 999
      TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/2101_GI_Metapass.png
  14. 597
      TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/2102_GI_Emission.png
  15. 999
      TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/2103_BakeMixed.png
  16. 965
      TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/2201_ReflectionProbes_Priority.png
  17. 999
      TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/2202_ReflectionProbes_Volume.png
  18. 999
      TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/2203_PlanarProbes.png
  19. 999
      TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/2401_Light_on_Tesselation.png
  20. 118
      TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0006_Std_Empty_Deferred_HDR.png
  21. 999
      TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0100_Std_FXAA.png
  22. 999
      TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0101_Std_FXAA_Fast.png
  23. 999
      TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0102_Std_SMAA.png
  24. 999
      TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0200_Std_Vignette.png
  25. 797
      TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0201_Std_LensDistort.png
  26. 764
      TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0202_Std_LensUnDistort.png
  27. 999
      TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0203_Std_ChromaticAberration.png
  28. 999
      TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0204_Std_ChromaticAberration_Fast.png
  29. 999
      TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0205_Std_Grain.png
  30. 999
      TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0206_Std_Grain_Colored.png
  31. 999
      TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0207_Std_Bloom_HDR.png
  32. 999
      TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0208_Std_Bloom_HDR_Fast.png
  33. 999
      TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0209_Std_Bloom_LDR.png
  34. 999
      TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0210_Std_Bloom_LDR_Fast.png
  35. 999
      TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0211_Std_LensDirt.png
  36. 999
      TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0212_Std_ColorGrading_HDR_Neutral.png
  37. 999
      TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0213_Std_ColorGrading_LDR_Neutral.png
  38. 999
      TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0214_Std_ColorGrading_HDR_Mix.png
  39. 999
      TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0215_Std_ColorGrading_LDR_Mix.png
  40. 1
      com.unity.render-pipelines.core/CoreRP/ShaderLibrary/Common.hlsl
  41. 13
      com.unity.render-pipelines.core/CoreRP/ShaderLibrary/UnityInstancing.hlsl
  42. 5
      com.unity.render-pipelines.high-definition/CHANGELOG.md
  43. 1
      com.unity.render-pipelines.high-definition/HDRP/Editor/Lighting/HDLightEditor.Styles.cs
  44. 137
      com.unity.render-pipelines.high-definition/HDRP/Editor/Lighting/HDLightEditor.cs
  45. 1
      com.unity.render-pipelines.high-definition/HDRP/Editor/Material/Lit/LitUI.cs
  46. 4
      com.unity.render-pipelines.high-definition/HDRP/Editor/Material/StackLit/BaseMaterialUI.cs
  47. 115
      com.unity.render-pipelines.high-definition/HDRP/Editor/Material/StackLit/StackLitUI.cs
  48. 5
      com.unity.render-pipelines.high-definition/HDRP/Editor/RenderPipeline/HDEditorUtils.cs
  49. 5
      com.unity.render-pipelines.high-definition/HDRP/Editor/RenderPipeline/Settings/RenderPipelineSettingsUI.cs
  50. 36
      com.unity.render-pipelines.high-definition/HDRP/Editor/ShaderGraph/HDPBRPass.template
  51. 29
      com.unity.render-pipelines.high-definition/HDRP/Editor/ShaderGraph/HDPBRSubShader.cs
  52. 18
      com.unity.render-pipelines.high-definition/HDRP/Editor/ShaderGraph/HDSubShaderUtilities.cs
  53. 32
      com.unity.render-pipelines.high-definition/HDRP/Editor/ShaderGraph/HDUnlitPassForward.template
  54. 9
      com.unity.render-pipelines.high-definition/HDRP/Editor/ShaderGraph/HDUnlitSubShader.cs
  55. 2
      com.unity.render-pipelines.high-definition/HDRP/HDRenderPipelineAsset.asset
  56. 3
      com.unity.render-pipelines.high-definition/HDRP/Lighting/Light/HDAdditionalLightData.cs
  57. 15
      com.unity.render-pipelines.high-definition/HDRP/Material/Decal/DecalUtilities.hlsl
  58. 2
      com.unity.render-pipelines.high-definition/HDRP/Material/GGXConvolution/RuntimeFilterIBL.cs
  59. 2
      com.unity.render-pipelines.high-definition/HDRP/Material/LayeredLit/LayeredLitData.hlsl
  60. 8
      com.unity.render-pipelines.high-definition/HDRP/Material/Lit/LitBuiltinData.hlsl
  61. 11
      com.unity.render-pipelines.high-definition/HDRP/Material/Lit/LitData.hlsl
  62. 4
      com.unity.render-pipelines.high-definition/HDRP/Material/Lit/LitDataIndividualLayer.hlsl
  63. 21
      com.unity.render-pipelines.high-definition/HDRP/Material/Lit/LitDataMeshModification.hlsl
  64. 16
      com.unity.render-pipelines.high-definition/HDRP/Material/MaterialUtilities.hlsl
  65. 10
      com.unity.render-pipelines.high-definition/HDRP/Material/StackLit/StackLit.hlsl
  66. 104
      com.unity.render-pipelines.high-definition/HDRP/Material/StackLit/StackLit.shader
  67. 68
      com.unity.render-pipelines.high-definition/HDRP/Material/StackLit/StackLitData.hlsl
  68. 56
      com.unity.render-pipelines.high-definition/HDRP/Material/StackLit/StackLitProperties.hlsl
  69. 2
      com.unity.render-pipelines.high-definition/HDRP/RenderPipelineResources/CopyDepthBuffer.shader
  70. 4
      com.unity.render-pipelines.high-definition/HDRP/ShaderPass/FragInputs.hlsl
  71. 11
      com.unity.render-pipelines.high-definition/HDRP/ShaderPass/ShaderPassDBuffer.hlsl
  72. 4
      com.unity.render-pipelines.high-definition/HDRP/ShaderPass/ShaderPassDepthOnly.hlsl
  73. 4
      com.unity.render-pipelines.high-definition/HDRP/ShaderPass/ShaderPassDistortion.hlsl
  74. 4
      com.unity.render-pipelines.high-definition/HDRP/ShaderPass/ShaderPassForward.hlsl
  75. 4
      com.unity.render-pipelines.high-definition/HDRP/ShaderPass/ShaderPassForwardUnlit.hlsl
  76. 4
      com.unity.render-pipelines.high-definition/HDRP/ShaderPass/ShaderPassGBuffer.hlsl
  77. 7
      com.unity.render-pipelines.high-definition/HDRP/ShaderPass/ShaderPassLightTransport.hlsl
  78. 24
      com.unity.render-pipelines.high-definition/HDRP/ShaderPass/ShaderPassVelocity.hlsl
  79. 16
      com.unity.render-pipelines.high-definition/HDRP/ShaderPass/TessellationShare.hlsl
  80. 16
      com.unity.render-pipelines.high-definition/HDRP/ShaderPass/VaryingMesh.hlsl
  81. 20
      com.unity.render-pipelines.high-definition/HDRP/ShaderPass/VertMesh.hlsl
  82. 26
      com.unity.render-pipelines.high-definition/HDRP/ShaderVariables.hlsl
  83. 64
      com.unity.render-pipelines.high-definition/HDRP/ShaderVariablesFunctions.hlsl
  84. 7
      com.unity.render-pipelines.high-definition/HDRP/ShaderVariablesMatrixDefsHDCamera.hlsl
  85. 4
      com.unity.render-pipelines.high-definition/HDRP/ShaderVariablesMatrixDefsLegacyUnity.hlsl
  86. 7
      com.unity.render-pipelines.lightweight/LWRP/Editor/ShaderGraph/LightWeightPBRSubShader.cs
  87. 6
      com.unity.render-pipelines.lightweight/LWRP/Editor/ShaderGraph/LightWeightUnlitSubShader.cs
  88. 3
      com.unity.shadergraph/CHANGELOG.md
  89. 2
      com.unity.shadergraph/Editor/Data/MasterNodes/ISubShader.cs
  90. 2
      com.unity.shadergraph/Editor/Data/Nodes/IMasterNode.cs
  91. 15
      com.unity.shadergraph/Editor/Data/Nodes/MasterNode.cs
  92. 12
      com.unity.shadergraph/Editor/Drawing/Blackboard/BlackboardProvider.cs
  93. 13
      com.unity.shadergraph/Editor/Drawing/Inspector/MasterPreviewView.cs
  94. 36
      com.unity.shadergraph/Editor/Drawing/MaterialGraphEditWindow.cs
  95. 17
      com.unity.shadergraph/Editor/Drawing/Views/GraphEditorView.cs
  96. 5
      com.unity.shadergraph/Editor/Drawing/Views/MaterialNodeView.cs
  97. 135
      com.unity.shadergraph/Editor/Importers/ShaderGraphImporter.cs
  98. 69
      com.unity.shadergraph/Editor/Importers/ShaderGraphImporterEditor.cs
  99. 17
      com.unity.shadergraph/Editor/Importers/ShaderSubGraphImporterEditor.cs
  100. 4
      TestProjects/HDRP_Tests/TestRunnerOptions.json

999
TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/1102_Unlit_Distortion.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/1103_Unlit_Distortion_DepthTest.png
文件差异内容过多而无法显示
查看文件

749
TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/1202_Lit_DoubleSideNormalMode.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/1204_Lit_Transparent_Fog.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/1208_Lit_Displacement_POM.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/1209_Lit_Displacement_Vertex.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/1210_Lit_BentNormal.png
文件差异内容过多而无法显示
查看文件

790
TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/1212_Lit_Emission.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/1302_SSS_MaxRadius.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/1303_SSS_Pre-Post.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/2001_Dynamic_Directional.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/2002_Dynamic_Mix.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/2101_GI_Metapass.png
文件差异内容过多而无法显示
查看文件

597
TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/2102_GI_Emission.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/2103_BakeMixed.png
文件差异内容过多而无法显示
查看文件

965
TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/2201_ReflectionProbes_Priority.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/2202_ReflectionProbes_Volume.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/2203_PlanarProbes.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/HDRP_Tests/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/2401_Light_on_Tesselation.png
文件差异内容过多而无法显示
查看文件

118
TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0006_Std_Empty_Deferred_HDR.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0100_Std_FXAA.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0101_Std_FXAA_Fast.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0102_Std_SMAA.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0200_Std_Vignette.png
文件差异内容过多而无法显示
查看文件

797
TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0201_Std_LensDistort.png
文件差异内容过多而无法显示
查看文件

764
TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0202_Std_LensUnDistort.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0203_Std_ChromaticAberration.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0204_Std_ChromaticAberration_Fast.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0205_Std_Grain.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0206_Std_Grain_Colored.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0207_Std_Bloom_HDR.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0208_Std_Bloom_HDR_Fast.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0209_Std_Bloom_LDR.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0210_Std_Bloom_LDR_Fast.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0211_Std_LensDirt.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0212_Std_ColorGrading_HDR_Neutral.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0213_Std_ColorGrading_LDR_Neutral.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0214_Std_ColorGrading_HDR_Mix.png
文件差异内容过多而无法显示
查看文件

999
TestProjects/PostProcessing/Assets/ReferenceImages/Linear/WindowsEditor/Direct3D11/0215_Std_ColorGrading_LDR_Mix.png
文件差异内容过多而无法显示
查看文件

1
com.unity.render-pipelines.core/CoreRP/ShaderLibrary/Common.hlsl


// space at the end of the variable name
// WS: world space
// RWS: Camera-Relative world space. A space where the translation of the camera have already been substract in order to improve precision
// VS: view space
// OS: object space
// CS: Homogenous clip spaces

13
com.unity.render-pipelines.core/CoreRP/ShaderLibrary/UnityInstancing.hlsl


#endif
UNITY_INSTANCING_BUFFER_END(unity_Builtins2)
#define UNITY_MATRIX_M UNITY_ACCESS_INSTANCED_PROP(unity_Builtins0, unity_ObjectToWorldArray)
#ifdef MODIFY_MATRIX_FOR_CAMERA_RELATIVE_RENDERING
#define UNITY_MATRIX_M ApplyCameraTranslationToMatrix(UNITY_ACCESS_INSTANCED_PROP(unity_Builtins0, unity_ObjectToWorldArray))
#else
#define UNITY_MATRIX_M UNITY_ACCESS_INSTANCED_PROP(unity_Builtins0, unity_ObjectToWorldArray)
#endif
#define UNITY_MATRIX_I_M UNITY_ACCESS_INSTANCED_PROP(MERGE_UNITY_BUILTINS_INDEX(UNITY_WORLDTOOBJECTARRAY_CB), unity_WorldToObjectArray)
#ifdef MODIFY_MATRIX_FOR_CAMERA_RELATIVE_RENDERING
#define UNITY_MATRIX_I_M ApplyCameraTranslationToInverseMatrix(UNITY_ACCESS_INSTANCED_PROP(MERGE_UNITY_BUILTINS_INDEX(UNITY_WORLDTOOBJECTARRAY_CB), unity_WorldToObjectArray))
#else
#define UNITY_MATRIX_I_M UNITY_ACCESS_INSTANCED_PROP(MERGE_UNITY_BUILTINS_INDEX(UNITY_WORLDTOOBJECTARRAY_CB), unity_WorldToObjectArray)
#endif
#else // UNITY_INSTANCING_ENABLED

5
com.unity.render-pipelines.high-definition/CHANGELOG.md


- Add contact shadows for punctual lights (in additional shadow settings), only one light is allowed to cast contact shadows at the same time and so at each frame a dominant light is choosed among all light with contact shadows enabled.
- Add PCSS shadow filter support (from SRP Core)
- Exposed shadow budget parameters in HDRP asset
- Add an option to generate an emissive mesh for area lights (currently rectangle light only). The mesh fits the size, intensity and color of the light.
- Change code in area light with LTC for Lit shader. Magnitude is now take from FGD texture instead of a separate texture.
- Change code in area light with LTC for Lit shader. Magnitude is now take from FGD texture instead of a separate texture
- Improve camera relative rendering: We now apply camera translation on the model matrix, so before the TransformObjectToWorld(). Note: unity_WorldToObject and unity_ObjectToWorld must never be used directly.
- Rename positionWS to positionRWS (Camera relative world position) at a lot of places (mainly in interpolator and FragInputs). In case of custom shader user will be required to update their code.
### Fixed
- Fix contact shadows applied on transmission

1
com.unity.render-pipelines.high-definition/HDRP/Editor/Lighting/HDLightEditor.Styles.cs


public readonly GUIContent shapeWidthBox = new GUIContent("Size X", "");
public readonly GUIContent shapeHeightBox = new GUIContent("Size Y", "");
public readonly GUIContent applyRangeAttenuation = new GUIContent("Apply Range Attenuation", "Allows disabling range attenuation. This is useful indoor (like a room) to avoid having to setup a large range for a light to get correct inverse square attenuation that may leak out of the indoor");
public readonly GUIContent displayAreaLightEmissiveMesh = new GUIContent("Display Emissive Mesh", "Generate an emissive mesh using the size, color and intensity of the area light");
public readonly GUIContent shape = new GUIContent("Type", "Specifies the current type of light. Possible types are Directional, Spot, Point, Rectangle and Line lights.");
public readonly GUIContent[] shapeNames;

137
com.unity.render-pipelines.high-definition/HDRP/Editor/Lighting/HDLightEditor.cs


using System;
using System.Linq;
using UnityEngine;
using UnityEngine.Assertions;
using UnityEngine.Experimental.Rendering;

public SerializedProperty applyRangeAttenuation;
public SerializedProperty volumetricDimmer;
public SerializedProperty lightUnit;
public SerializedProperty displayAreaLightEmissiveMesh;
// Editor stuff
public SerializedProperty useOldInspector;

// Used for UI only; the processing code must use LightTypeExtent and LightType
LightShape m_LightShape;
HDAdditionalLightData[] m_AdditionalLightDatas;
AdditionalShadowData[] m_AdditionalShadowDatas;
// Used to detect if the scale have been changed via the transform component
Vector3 m_OldAreaLightSize;
bool m_UpdateAreaLightEmissiveMesh;
protected override void OnEnable()
{

var lightData = CoreEditorUtils.GetAdditionalData<HDAdditionalLightData>(targets, HDAdditionalLightData.InitDefaultHDAdditionalLightData);
var shadowData = CoreEditorUtils.GetAdditionalData<AdditionalShadowData>(targets, HDAdditionalShadowData.InitDefaultHDAdditionalShadowData);
m_SerializedAdditionalLightData = new SerializedObject(lightData);
m_SerializedAdditionalShadowData = new SerializedObject(shadowData);
m_AdditionalLightDatas = CoreEditorUtils.GetAdditionalData<HDAdditionalLightData>(targets, HDAdditionalLightData.InitDefaultHDAdditionalLightData);
m_AdditionalShadowDatas = CoreEditorUtils.GetAdditionalData<AdditionalShadowData>(targets, HDAdditionalShadowData.InitDefaultHDAdditionalShadowData);
m_SerializedAdditionalLightData = new SerializedObject(m_AdditionalLightDatas);
m_SerializedAdditionalShadowData = new SerializedObject(m_AdditionalShadowDatas);
using (var o = new PropertyFetcher<HDAdditionalLightData>(m_SerializedAdditionalLightData))
m_AdditionalLightData = new SerializedLightData

lightDimmer = o.Find(x => x.lightDimmer),
volumetricDimmer = o.Find(x => x.volumetricDimmer),
lightUnit = o.Find(x => x.lightUnit),
displayAreaLightEmissiveMesh = o.Find(x => x.displayAreaLightEmissiveMesh),
fadeDistance = o.Find(x => x.fadeDistance),
affectDiffuse = o.Find(x => x.affectDiffuse),
affectSpecular = o.Find(x => x.affectSpecular),

CoreEditorUtils.DrawSplitter();
EditorGUILayout.Space();
UpdateAreaLightEmissiveMeshSize();
if (m_UpdateAreaLightEmissiveMesh)
UpdateAreaLightEmissiveMesh();
}
void DrawFoldout(SerializedProperty foldoutProperty, string title, Action func)

if (EditorGUI.EndChangeCheck())
{
UpdateLightIntensityUnit();
m_UpdateAreaLightEmissiveMesh = true;
((Light)target).SetLightDirty(); // Should be apply only to parameter that's affect GI, but make the code cleaner
}
}

m_AdditionalLightData.lightUnit.enumValueIndex = (int)LightUnit.Lumen;
}
bool IsAreaLightShape(LightShape shape)
{
return shape == LightShape.Rectangle || shape == LightShape.Line;
}
void UpdateAreaLightEmissiveMesh()
{
foreach (var lightData in m_AdditionalLightDatas)
{
GameObject lightGameObject = lightData.gameObject;
MeshRenderer emissiveMeshRenderer = lightData.GetComponent<MeshRenderer>();
MeshFilter emissiveMeshFilter = lightData.GetComponent<MeshFilter>();
Light light = lightGameObject.GetComponent<Light>();
bool displayAreaLightEmissiveMesh = IsAreaLightShape(m_LightShape) && m_LightShape != LightShape.Line && m_AdditionalLightData.displayAreaLightEmissiveMesh.boolValue;
// Ensure that the emissive mesh components are here
if (displayAreaLightEmissiveMesh)
{
if (emissiveMeshRenderer == null)
emissiveMeshRenderer = lightGameObject.AddComponent<MeshRenderer>();
if (emissiveMeshFilter == null)
emissiveMeshFilter = lightGameObject.AddComponent<MeshFilter>();
}
else // Or remove them if the option is disabled
{
if (emissiveMeshRenderer != null)
DestroyImmediate(emissiveMeshRenderer);
if (emissiveMeshFilter != null)
DestroyImmediate(emissiveMeshFilter);
// Skip to the next light
continue;
}
float areaLightIntensity = 0.0f;
// Update Mesh emissive value
switch (m_LightShape)
{
case LightShape.Rectangle:
emissiveMeshFilter.mesh = HDEditorUtils.LoadAsset< Mesh >("RenderPipelineResources/Quad.FBX");
lightGameObject.transform.localScale = new Vector3(lightData.shapeWidth, lightData.shapeHeight, 0);
// Do the same conversion as for light intensity
areaLightIntensity = LightUtils.ConvertRectLightLumenToLuminance(
m_AdditionalLightData.intensity.floatValue,
lightData.shapeWidth,
lightData.shapeHeight);
break;
default:
break;
}
if (emissiveMeshRenderer.sharedMaterial == null)
emissiveMeshRenderer.material = new Material(Shader.Find("HDRenderPipeline/Unlit"));
emissiveMeshRenderer.sharedMaterial.SetColor("_UnlitColor", Color.black);
// Note that we must use the light in linear RGB
emissiveMeshRenderer.sharedMaterial.SetColor("_EmissiveColor", light.color.linear * areaLightIntensity);
}
}
// This function updates the area light size when the local scale of the gameobject changes
void UpdateAreaLightEmissiveMeshSize()
{
// Early exit if the light type is not an area
if (!IsAreaLightShape(m_LightShape) || target == null || targets.Length > 1)
return ;
Vector3 lightSize = ((Light)target).transform.localScale;
lightSize = Vector3.Max(Vector3.one * k_MinAreaWidth, lightSize);
if (lightSize == m_OldAreaLightSize)
return ;
switch (m_LightShape)
{
case LightShape.Rectangle:
m_AdditionalLightData.shapeWidth.floatValue = lightSize.x;
m_AdditionalLightData.shapeHeight.floatValue = lightSize.y;
break;
default:
break;
}
m_UpdateAreaLightEmissiveMesh = true;
m_OldAreaLightSize = lightSize;
}
LightUnit LightIntensityUnitPopup(LightShape shape)
{
LightUnit selectedLightUnit;

void DrawLightSettings()
{
EditorGUI.BeginChangeCheck();
if (EditorGUI.EndChangeCheck())
m_UpdateAreaLightEmissiveMesh = true;
EditorGUI.BeginChangeCheck();
EditorGUILayout.BeginHorizontal();
EditorGUILayout.PropertyField(m_AdditionalLightData.intensity, s_Styles.lightIntensity);

EditorGUILayout.PropertyField(m_AdditionalLightData.enableSpotReflector, s_Styles.enableSpotReflector);
}
if (EditorGUI.EndChangeCheck())
{
m_UpdateAreaLightEmissiveMesh = true;
}
settings.DrawBounceIntensity();
settings.DrawLightmapping();

// No cookie with area light (maybe in future textured area light ?)
if (m_LightShape != LightShape.Rectangle && m_LightShape != LightShape.Line)
if (!IsAreaLightShape(m_LightShape))
{
settings.DrawCookie();

EditorGUILayout.PropertyField(m_AdditionalLightData.volumetricDimmer, s_Styles.volumetricDimmer);
if (m_LightShape != LightShape.Directional)
EditorGUILayout.PropertyField(m_AdditionalLightData.applyRangeAttenuation, s_Styles.applyRangeAttenuation);
// Emissive mesh for area light only
if (IsAreaLightShape(m_LightShape))
{
EditorGUI.BeginChangeCheck();
EditorGUILayout.PropertyField(m_AdditionalLightData.displayAreaLightEmissiveMesh, s_Styles.displayAreaLightEmissiveMesh);
if (EditorGUI.EndChangeCheck())
m_UpdateAreaLightEmissiveMesh = true;
}
EditorGUI.indentLevel--;
}

1
com.unity.render-pipelines.high-definition/HDRP/Editor/Material/Lit/LitUI.cs


public static GUIContent baseColorText = new GUIContent("Base Color + Opacity", "Albedo (RGB) and Opacity (A)");
public static GUIContent smoothnessMapChannelText = new GUIContent("Smoothness Source", "Smoothness texture and channel");
public static GUIContent metallicText = new GUIContent("Metallic", "Metallic scale factor");
public static GUIContent smoothnessText = new GUIContent("Smoothness", "Smoothness scale factor");
public static GUIContent smoothnessRemappingText = new GUIContent("Smoothness Remapping", "Smoothness remapping");

4
com.unity.render-pipelines.high-definition/HDRP/Editor/Material/StackLit/BaseMaterialUI.cs


m_ChannelProperty = new ComboProperty(parent, propertyName + "Channel", "Channel", Enum.GetNames(typeof(Channel)), false);
m_RemapProperty = new Property(parent, constantPropertyName + "Remap", "Remapping", "Defines the range to remap/scale the values in texture", false);
m_InvertRemapProperty = new Property(parent, constantPropertyName + "RemapInverted", "Invert Remapping", "Whether the mapping values are inverted.", false);
m_RemapProperty = new Property(parent, propertyName + "Remap", "Remapping", "Defines the range to remap/scale the values in texture", false);
m_InvertRemapProperty = new Property(parent, propertyName + "RemapInverted", "Invert Remapping", "Whether the mapping values are inverted.", false);
}
public override void OnFindProperty(MaterialProperty[] props)

115
com.unity.render-pipelines.high-definition/HDRP/Editor/Material/StackLit/StackLitUI.cs


protected const string k_IridescenceMaskMap = "_IridescenceMaskMap";
protected const string k_IridescenceMaskMapUV = "_IridescenceMaskMapUV";
// Details
protected const string k_EnableDetails = "_EnableDetails";
protected const string k_DetailMask = "_DetailMask";
protected const string k_DetailMaskMap = "_DetailMaskMap";
protected const string k_DetailMaskMapUV = "_DetailMaskMapUV";
protected const string k_DetailSmoothness = "_DetailSmoothness";
protected const string k_DetailSmoothnessScale = "_DetailSmoothnessScale";
protected const string k_DetailSmoothnessMap = "_DetailSmoothnessMap";
protected const string k_DetailSmoothnessMapUV = "_DetailSmoothnessMapUV";
protected const string k_DetailNormalMap = "_DetailNormalMap";
protected const string k_DetailNormalMapUV = "_DetailNormalMapUV";
protected const string k_DetailNormalScale = "_DetailNormalScale";
// Stencil is use to control lighting mode (regular, split lighting)
protected const string kStencilRef = "_StencilRef";
protected const string kStencilWriteMask = "_StencilWriteMask";

private readonly GroupProperty _baseMaterialProperties = null;
private readonly GroupProperty _materialProperties = null;
private Property EnableDetails;
private Property EnableDualSpecularLobe;
private Property EnableDualSpecularLobe;
private Property EnableIridescence;
private Property EnableGeometricNormalFiltering;

});
//
EnableDetails = new Property(this, k_EnableDetails, "Enable Details", "Enable Detail", true);
EnableSSS = new Property(this, k_EnableSubsurfaceScattering, "Enable Subsurface Scattering", "Enable Subsurface Scattering", true);
EnableTransmission = new Property(this, k_EnableTransmission, "Enable Transmission", "Enable Transmission", true);
EnableCoat = new Property(this, k_EnableCoat, "Enable Coat", "Enable coat layer with true vertical physically based BSDF mixing", true);

{
new GroupProperty(this, "_MaterialFeatures", "Material Features", new BaseProperty[]
{
EnableDetails,
EnableDualSpecularLobe,
EnableAnisotropy,
EnableCoat,

new TextureProperty(this, k_NormalMap, k_NormalScale, "Normal", "Normal Map", true, false, true),
new TextureProperty(this, k_AmbientOcclusionMap, k_AmbientOcclusion, "AmbientOcclusion", "AmbientOcclusion Map", false, false),
}),
new GroupProperty(this, "_Details", "Details", new BaseProperty[]
{
new TextureProperty(this, k_DetailMaskMap, "", "Detail Mask Map", "Detail Mask Map", false, false),
new TextureProperty(this, k_DetailNormalMap, k_DetailNormalScale, "Detail Normal Map", "Detail Normal Map Scale", true, false, true),
new TextureProperty(this, k_DetailSmoothnessMap, k_DetailSmoothnessScale, "Detail Smoothness", "Detail Smoothness", true, false),
}, _ => EnableDetails.BoolValue == true),
new GroupProperty(this, "_DualSpecularLobe", "Dual Specular Lobe", new BaseProperty[]
{

// TODO: Caution this can generate a lot of garbage collection call ?
string useMapPropertyName = basePropertyName + "UseMap";
string mapPropertyName = basePropertyName + "Map";
string remapPropertyName = basePropertyName + "Remap";
string invertPropertyName = basePropertyName + "RemapInverted";
string rangePropertyName = basePropertyName + "Range";
string remapPropertyName = basePropertyName + "MapRemap";
string invertPropertyName = basePropertyName + "MapRemapInverted";
string rangePropertyName = basePropertyName + "MapRange";
Vector4 rangeVector = material.GetVector(remapPropertyName);
if (material.HasProperty(invertPropertyName) && material.GetFloat(invertPropertyName) > 0.0f)
if (material.HasProperty(remapPropertyName) && material.HasProperty(rangePropertyName))
float s = rangeVector.x;
rangeVector.x = rangeVector.y;
rangeVector.y = s;
Vector4 rangeVector = material.GetVector(remapPropertyName);
if (material.HasProperty(invertPropertyName) && material.GetFloat(invertPropertyName) > 0.0f)
{
float s = rangeVector.x;
rangeVector.x = rangeVector.y;
rangeVector.y = s;
}
material.SetVector(rangePropertyName, rangeVector);
material.SetFloat(useMapPropertyName, 1.0f);
material.SetVector(rangePropertyName, rangeVector);
if (material.HasProperty(useMapPropertyName))
{
material.SetFloat(useMapPropertyName, 1.0f);
}
int channel = (int)material.GetFloat(channelPropertyName);
switch (channel)
if (material.HasProperty(channelPropertyName))
case 0:
material.SetVector(channelMaskPropertyName, new Vector4(1.0f, 0.0f, 0.0f, 0.0f));
break;
case 1:
material.SetVector(channelMaskPropertyName, new Vector4(0.0f, 1.0f, 0.0f, 0.0f));
break;
case 2:
material.SetVector(channelMaskPropertyName, new Vector4(0.0f, 0.0f, 1.0f, 0.0f));
break;
case 3:
material.SetVector(channelMaskPropertyName, new Vector4(0.0f, 0.0f, 0.0f, 1.0f));
break;
int channel = (int)material.GetFloat(channelPropertyName);
switch (channel)
{
case 0:
material.SetVector(channelMaskPropertyName, new Vector4(1.0f, 0.0f, 0.0f, 0.0f));
break;
case 1:
material.SetVector(channelMaskPropertyName, new Vector4(0.0f, 1.0f, 0.0f, 0.0f));
break;
case 2:
material.SetVector(channelMaskPropertyName, new Vector4(0.0f, 0.0f, 1.0f, 0.0f));
break;
case 3:
material.SetVector(channelMaskPropertyName, new Vector4(0.0f, 0.0f, 0.0f, 1.0f));
break;
}
material.SetFloat(useMapPropertyName, 0.0f);
material.SetVector(rangePropertyName, new Vector4(0.0f, 1.0f, 0.0f, 0.0f));
material.SetVector(channelMaskPropertyName, new Vector4(1.0f, 0.0f, 0.0f, 0.0f));
if (material.HasProperty(useMapPropertyName))
{
material.SetFloat(useMapPropertyName, 0.0f);
}
if (material.HasProperty(rangePropertyName))
{
material.SetVector(rangePropertyName, new Vector4(0.0f, 1.0f, 0.0f, 0.0f));
}
if (material.HasProperty(channelPropertyName))
{
material.SetVector(channelMaskPropertyName, new Vector4(1.0f, 0.0f, 0.0f, 0.0f));
}
}
}

//TODO see BaseLitUI.cs:SetupBaseLitKeywords (stencil etc)
SetupBaseUnlitKeywords(material);
SetupBaseUnlitMaterialPass(material);

}
}
//TODO: stencil state, displacement, wind, depthoffset, tessellation
SetupMainTexForAlphaTestGI("_BaseColorMap", "_BaseColor", material);
//TODO: disable DBUFFER

SetupTextureMaterialProperty(material, k_IridescenceThickness);
SetupTextureMaterialProperty(material, k_IridescenceMask);
SetupTextureMaterialProperty(material, k_CoatSmoothness);
// details
SetupTextureMaterialProperty(material, k_DetailMask);
SetupTextureMaterialProperty(material, k_DetailSmoothness);
// Check if we are using specific UVs.
TextureProperty.UVMapping[] uvIndices = new[]

(TextureProperty.UVMapping)material.GetFloat(k_IridescenceMaskMapUV),
(TextureProperty.UVMapping)material.GetFloat(k_CoatSmoothnessMapUV),
(TextureProperty.UVMapping)material.GetFloat(k_CoatNormalMapUV),
// Details
(TextureProperty.UVMapping)material.GetFloat(k_DetailMaskMapUV),
(TextureProperty.UVMapping)material.GetFloat(k_DetailSmoothnessMapUV),
(TextureProperty.UVMapping)material.GetFloat(k_DetailNormalMapUV),
};
// Set keyword for mapping

requireTriplanar = requireTriplanar || uvIndices[i] == TextureProperty.UVMapping.Triplanar;
}
CoreUtils.SetKeyword(material, "_USE_TRIPLANAR", requireTriplanar);
bool detailsEnabled = material.HasProperty(k_EnableDetails) && material.GetFloat(k_EnableDetails) > 0.0f;
CoreUtils.SetKeyword(material, "_USE_DETAILMAP", detailsEnabled);
bool dualSpecularLobeEnabled = material.HasProperty(k_EnableDualSpecularLobe) && material.GetFloat(k_EnableDualSpecularLobe) > 0.0f;
CoreUtils.SetKeyword(material, "_MATERIAL_FEATURE_DUAL_SPECULAR_LOBE", dualSpecularLobeEnabled);

5
com.unity.render-pipelines.high-definition/HDRP/Editor/RenderPipeline/HDEditorUtils.cs


return "Packages/com.unity.render-pipelines.core/CoreRP/";
}
public static T LoadAsset<T>(string relativePath) where T : UnityEngine.Object
{
return AssetDatabase.LoadAssetAtPath<T>(GetHDRenderPipelinePath() + relativePath);
}
public static bool ResetMaterialKeywords(Material material)
{
MaterialResetter resetter;

5
com.unity.render-pipelines.high-definition/HDRP/Editor/RenderPipeline/Settings/RenderPipelineSettingsUI.cs


EditorGUILayout.PropertyField(d.supportSSR, _.GetContent("Support SSR|Enable memory use by SSR effect."));
EditorGUILayout.PropertyField(d.supportSSAO, _.GetContent("Support SSAO|Enable memory use by SSAO effect."));
EditorGUILayout.PropertyField(d.supportDBuffer, _.GetContent("Support Decal Buffer|Enable memory and variant of decal buffer."));
EditorGUILayout.PropertyField(d.supportMSAA, _.GetContent("Support Multi Sampling Anti-Aliasing|This feature doesn't work currently."));
EditorGUILayout.PropertyField(d.MSAASampleCount, _.GetContent("MSAA Sample Count|Allow to select the level of MSAA."));
// TODO: Implement MSAA - Hide for now as it doesn't work
//EditorGUILayout.PropertyField(d.supportMSAA, _.GetContent("Support Multi Sampling Anti-Aliasing|This feature doesn't work currently."));
//EditorGUILayout.PropertyField(d.MSAASampleCount, _.GetContent("MSAA Sample Count|Allow to select the level of MSAA."));
EditorGUILayout.PropertyField(d.supportSubsurfaceScattering, _.GetContent("Support Subsurface Scattering"));
EditorGUILayout.PropertyField(d.supportOnlyForward, _.GetContent("Support Only Forward|Remove all the memory and shader variant of GBuffer. The renderer can be switch to deferred anymore."));
EditorGUILayout.PropertyField(d.supportMotionVectors, _.GetContent("Support Motion Vectors|Motion vector are use for Motion Blur, TAA, temporal re-projection of various effect like SSR."));

36
com.unity.render-pipelines.high-definition/HDRP/Editor/ShaderGraph/HDPBRPass.template


$AttributesMesh.uv2: #define ATTRIBUTES_NEED_TEXCOORD2
$AttributesMesh.uv3: #define ATTRIBUTES_NEED_TEXCOORD3
$AttributesMesh.color: #define ATTRIBUTES_NEED_COLOR
$VaryingsMeshToPS.positionWS: #define VARYINGS_NEED_POSITION_WS
$VaryingsMeshToPS.positionRWS: #define VARYINGS_NEED_POSITION_WS
$VaryingsMeshToPS.normalWS: #define VARYINGS_NEED_TANGENT_TO_WORLD
$VaryingsMeshToPS.texCoord0: #define VARYINGS_NEED_TEXCOORD0
$VaryingsMeshToPS.texCoord1: #define VARYINGS_NEED_TEXCOORD1

$VertexDescriptionInputs.ViewSpaceBiTangent: output.ViewSpaceBiTangent = TransformWorldToViewDir(output.WorldSpaceBiTangent);
$VertexDescriptionInputs.TangentSpaceBiTangent: output.TangentSpaceBiTangent = float3(0.0f, 1.0f, 0.0f);
$VertexDescriptionInputs.ObjectSpacePosition: output.ObjectSpacePosition = input.positionOS;
$VertexDescriptionInputs.WorldSpacePosition: output.WorldSpacePosition = TransformObjectToWorld(input.positionOS);
$VertexDescriptionInputs.WorldSpacePosition: output.WorldSpacePosition = GetAbsolutePositionWS(TransformObjectToWorld(input.positionOS));
$VertexDescriptionInputs.ViewSpacePosition: output.ViewSpacePosition = TransformWorldToView(output.WorldSpacePosition);
$VertexDescriptionInputs.TangentSpacePosition: output.TangentSpacePosition = float3(0.0f, 0.0f, 0.0f);
$VertexDescriptionInputs.WorldSpaceViewDirection: output.WorldSpaceViewDirection = GetWorldSpaceNormalizeViewDir(output.WorldSpacePosition);

output.worldToTangent = k_identity3x3;
output.positionSS = input.positionCS; // input.positionCS is SV_Position
$FragInputs.positionWS: output.positionWS = input.positionWS;
$FragInputs.positionRWS: output.positionRWS = input.positionRWS;
$FragInputs.worldToTangent: output.worldToTangent = BuildWorldToTangent(input.tangentWS, input.normalWS);
$FragInputs.texCoord0: output.texCoord0 = input.texCoord0;
$FragInputs.texCoord1: output.texCoord1 = input.texCoord1;

$SurfaceDescriptionInputs.ViewSpaceNormal: output.ViewSpaceNormal = mul(output.WorldSpaceNormal, (float3x3) UNITY_MATRIX_I_V); // transposed multiplication by inverse matrix to handle normal scale
$SurfaceDescriptionInputs.TangentSpaceNormal: output.TangentSpaceNormal = float3(0.0f, 0.0f, 1.0f);
$SurfaceDescriptionInputs.WorldSpaceTangent: output.WorldSpaceTangent = input.worldToTangent[0].xyz;
$SurfaceDescriptionInputs.ObjectSpaceTangent: output.ObjectSpaceTangent = mul((float3x3) unity_WorldToObject, output.WorldSpaceTangent);
$SurfaceDescriptionInputs.ViewSpaceTangent: output.ViewSpaceTangent = mul((float3x3) UNITY_MATRIX_V, output.WorldSpaceTangent);
$SurfaceDescriptionInputs.ObjectSpaceTangent: output.ObjectSpaceTangent = TransformWorldToObjectDir(output.WorldSpaceTangent);
$SurfaceDescriptionInputs.ViewSpaceTangent: output.ViewSpaceTangent = TransformWorldToViewDir(output.WorldSpaceTangent);
$SurfaceDescriptionInputs.ObjectSpaceBiTangent: output.ObjectSpaceBiTangent = mul((float3x3) unity_WorldToObject, output.WorldSpaceBiTangent);
$SurfaceDescriptionInputs.ViewSpaceBiTangent: output.ViewSpaceBiTangent = mul((float3x3) UNITY_MATRIX_V, output.WorldSpaceBiTangent);
$SurfaceDescriptionInputs.ObjectSpaceBiTangent: output.ObjectSpaceBiTangent = TransformWorldToObjectDir(output.WorldSpaceBiTangent);
$SurfaceDescriptionInputs.ViewSpaceBiTangent: output.ViewSpaceBiTangent = TransformWorldToViewDir(output.WorldSpaceBiTangent);
$SurfaceDescriptionInputs.ObjectSpaceViewDirection: output.ObjectSpaceViewDirection = mul((float3x3) unity_WorldToObject, output.WorldSpaceViewDirection);
$SurfaceDescriptionInputs.ViewSpaceViewDirection: output.ViewSpaceViewDirection = mul((float3x3) UNITY_MATRIX_V, output.WorldSpaceViewDirection);
$SurfaceDescriptionInputs.ObjectSpaceViewDirection: output.ObjectSpaceViewDirection = TransformWorldToObjectDir(output.WorldSpaceViewDirection);
$SurfaceDescriptionInputs.ViewSpaceViewDirection: output.ViewSpaceViewDirection = TransformWorldToViewDir(output.WorldSpaceViewDirection);
$SurfaceDescriptionInputs.WorldSpacePosition: // TODO: FragInputs.positionWS is badly named -- it's camera relative, not in world space
$SurfaceDescriptionInputs.WorldSpacePosition: // we have to fix it up here to match graph input expectations
$SurfaceDescriptionInputs.WorldSpacePosition: output.WorldSpacePosition = input.positionWS + _WorldSpaceCameraPos;
$SurfaceDescriptionInputs.ObjectSpacePosition: output.ObjectSpacePosition = mul(unity_WorldToObject, float4(input.positionWS + _WorldSpaceCameraPos, 1.0f)).xyz;
$SurfaceDescriptionInputs.ViewSpacePosition: float4 posViewSpace = mul(UNITY_MATRIX_V, float4(input.positionWS, 1.0f));
$SurfaceDescriptionInputs.WorldSpacePosition: output.WorldSpacePosition = GetAbsolutePositionWS(input.positionRWS);
$SurfaceDescriptionInputs.ObjectSpacePosition: output.ObjectSpacePosition = TransformWorldToObject(input.positionRWS);
$SurfaceDescriptionInputs.ViewSpacePosition: float4 posViewSpace = TransformWorldToView(input.positionRWS);
$SurfaceDescriptionInputs.ScreenPosition: output.ScreenPosition = ComputeScreenPos(TransformWorldToHClip(input.positionWS), _ProjectionParams.x);
$SurfaceDescriptionInputs.ScreenPosition: output.ScreenPosition = ComputeScreenPos(TransformWorldToHClip(input.positionRWS), _ProjectionParams.x);
$SurfaceDescriptionInputs.VertexColor: output.VertexColor = input.color;
$SurfaceDescriptionInputs.FaceSign: output.FaceSign = input.isFrontFace;

float3 bentNormalWS = surfaceData.normalWS; // TODO : make bent normals work
builtinData.opacity = surfaceDescription.Alpha;
builtinData.bakeDiffuseLighting = SampleBakedGI(fragInputs.positionWS, bentNormalWS, fragInputs.texCoord1, fragInputs.texCoord2); // see GetBuiltinData()
builtinData.bakeDiffuseLighting = SampleBakedGI(fragInputs.positionRWS, bentNormalWS, fragInputs.texCoord1, fragInputs.texCoord2); // see GetBuiltinData()
// It is safe to call this function here as surfaceData have been filled
// We want to know if we must enable transmission on GI for SSS material, if the material have no SSS, this code will be remove by the compiler.

// however it will not optimize the lightprobe case due to the proxy volume relying on dynamic if (we rely must get right of this dynamic if), not a problem for SH9, but a problem for proxy volume.
// TODO: optimize more this code.
// Add GI transmission contribution by resampling the GI for inverted vertex normal
builtinData.bakeDiffuseLighting += SampleBakedGI(fragInputs.positionWS, -fragInputs.worldToTangent[2], fragInputs.texCoord1, fragInputs.texCoord2) * bsdfData.transmittance;
builtinData.bakeDiffuseLighting += SampleBakedGI(fragInputs.positionRWS, -fragInputs.worldToTangent[2], fragInputs.texCoord1, fragInputs.texCoord2) * bsdfData.transmittance;
float4 shadowMask = SampleShadowMask(fragInputs.positionWS, fragInputs.texCoord1);
float4 shadowMask = SampleShadowMask(fragInputs.positionRWS, fragInputs.texCoord1);
builtinData.shadowMask0 = shadowMask.x;
builtinData.shadowMask1 = shadowMask.y;
builtinData.shadowMask2 = shadowMask.z;

29
com.unity.render-pipelines.high-definition/HDRP/Editor/ShaderGraph/HDPBRSubShader.cs


using System.Collections.Generic;
using System.IO;
using System.Linq;
using UnityEngine.Experimental.Rendering;
using UnityEngine.Experimental.Rendering.HDPipeline;
namespace UnityEditor.Experimental.Rendering.HDPipeline
{

RequiredFields = new List<string>()
{
"FragInputs.worldToTangent",
"FragInputs.positionWS",
"FragInputs.positionRWS",
"FragInputs.texCoord1",
"FragInputs.texCoord2"
},

RequiredFields = new List<string>()
{
// "FragInputs.worldToTangent",
// "FragInputs.positionWS",
// "FragInputs.positionRWS",
},
PixelShaderSlots = new List<int>()
{

RequiredFields = new List<string>()
{
// "FragInputs.worldToTangent",
// "FragInputs.positionWS",
// "FragInputs.positionRWS",
},
PixelShaderSlots = new List<int>()
{

RequiredFields = new List<string>()
{
// "FragInputs.worldToTangent",
// "FragInputs.positionWS",
// "FragInputs.positionRWS",
},
PixelShaderSlots = new List<int>()
{

},
RequiredFields = new List<string>()
{
"FragInputs.positionWS",
"FragInputs.positionRWS",
},
StencilOverride = new List<string>()
{

RequiredFields = new List<string>()
{
// "FragInputs.worldToTangent",
// "FragInputs.positionWS",
// "FragInputs.positionRWS",
},
PixelShaderSlots = new List<int>()
{

RequiredFields = new List<string>()
{
// "FragInputs.worldToTangent",
// "FragInputs.positionWS",
// "FragInputs.positionRWS",
},
PixelShaderSlots = new List<int>()
{

RequiredFields = new List<string>()
{
// "FragInputs.worldToTangent",
// "FragInputs.positionWS",
// "FragInputs.positionRWS",
},
PixelShaderSlots = new List<int>()
{

RequiredFields = new List<string>()
{
"FragInputs.worldToTangent",
// "FragInputs.positionWS",
// "FragInputs.positionRWS",
},
PixelShaderSlots = new List<int>()
{

RequiredFields = new List<string>()
{
// "FragInputs.worldToTangent",
// "FragInputs.positionWS",
// "FragInputs.positionRWS",
},
PixelShaderSlots = new List<int>()
{

subShader.AddShaderChunk("}", true);
return subShader.GetShaderString(0);
}
public bool IsPipelineCompatible(RenderPipelineAsset renderPipelineAsset)
{
return renderPipelineAsset is HDRenderPipelineAsset;
}
}
}

18
com.unity.render-pipelines.high-definition/HDRP/Editor/ShaderGraph/HDSubShaderUtilities.cs


struct VaryingsMeshToPS
{
[Semantic("SV_Position")] Vector4 positionCS;
[Optional] Vector3 positionWS;
[Optional] Vector3 positionRWS;
[Optional] Vector3 normalWS;
[Optional] Vector4 tangentWS; // w contain mirror sign
[Optional] Vector2 texCoord0;

public static Dependency[] tessellationDependencies = new Dependency[]
{
new Dependency("VaryingsMeshToPS.positionWS", "VaryingsMeshToDS.positionWS"),
new Dependency("VaryingsMeshToPS.positionRWS", "VaryingsMeshToDS.positionRWS"),
new Dependency("VaryingsMeshToPS.normalWS", "VaryingsMeshToDS.normalWS"),
new Dependency("VaryingsMeshToPS.tangentWS", "VaryingsMeshToDS.tangentWS"),
new Dependency("VaryingsMeshToPS.texCoord0", "VaryingsMeshToDS.texCoord0"),

public static Dependency[] standardDependencies = new Dependency[]
{
new Dependency("VaryingsMeshToPS.positionWS", "AttributesMesh.positionOS"),
new Dependency("VaryingsMeshToPS.positionRWS", "AttributesMesh.positionOS"),
new Dependency("VaryingsMeshToPS.normalWS", "AttributesMesh.normalOS"),
new Dependency("VaryingsMeshToPS.tangentWS", "AttributesMesh.tangentOS"),
new Dependency("VaryingsMeshToPS.texCoord0", "AttributesMesh.uv0"),

struct VaryingsMeshToDS
{
Vector3 positionWS;
Vector3 positionRWS;
Vector3 normalWS;
[Optional] Vector4 tangentWS;
[Optional] Vector2 texCoord0;

{
public static Dependency[] dependencies = new Dependency[]
{
new Dependency("FragInputs.positionWS", "VaryingsMeshToPS.positionWS"),
new Dependency("FragInputs.positionRWS", "VaryingsMeshToPS.positionRWS"),
new Dependency("FragInputs.worldToTangent", "VaryingsMeshToPS.tangentWS"),
new Dependency("FragInputs.worldToTangent", "VaryingsMeshToPS.normalWS"),
new Dependency("FragInputs.texCoord0", "VaryingsMeshToPS.texCoord0"),

new Dependency("SurfaceDescriptionInputs.ObjectSpaceBiTangent", "SurfaceDescriptionInputs.WorldSpaceBiTangent"),
new Dependency("SurfaceDescriptionInputs.ViewSpaceBiTangent", "SurfaceDescriptionInputs.WorldSpaceBiTangent"),
new Dependency("SurfaceDescriptionInputs.WorldSpacePosition", "FragInputs.positionWS"),
new Dependency("SurfaceDescriptionInputs.ObjectSpacePosition", "FragInputs.positionWS"),
new Dependency("SurfaceDescriptionInputs.ViewSpacePosition", "FragInputs.positionWS"),
new Dependency("SurfaceDescriptionInputs.WorldSpacePosition", "FragInputs.positionRWS"),
new Dependency("SurfaceDescriptionInputs.ObjectSpacePosition", "FragInputs.positionRWS"),
new Dependency("SurfaceDescriptionInputs.ViewSpacePosition", "FragInputs.positionRWS"),
new Dependency("SurfaceDescriptionInputs.WorldSpaceViewDirection", "FragInputs.positionWS"), // we build WorldSpaceViewDirection using FragInputs.positionWS in GetWorldSpaceNormalizeViewDir()
new Dependency("SurfaceDescriptionInputs.WorldSpaceViewDirection", "FragInputs.positionRWS"), // we build WorldSpaceViewDirection using FragInputs.positionRWS in GetWorldSpaceNormalizeViewDir()
new Dependency("SurfaceDescriptionInputs.ObjectSpaceViewDirection", "SurfaceDescriptionInputs.WorldSpaceViewDirection"),
new Dependency("SurfaceDescriptionInputs.ViewSpaceViewDirection", "SurfaceDescriptionInputs.WorldSpaceViewDirection"),
new Dependency("SurfaceDescriptionInputs.TangentSpaceViewDirection", "SurfaceDescriptionInputs.WorldSpaceViewDirection"),

32
com.unity.render-pipelines.high-definition/HDRP/Editor/ShaderGraph/HDUnlitPassForward.template


$AttributesMesh.uv2: #define ATTRIBUTES_NEED_TEXCOORD2
$AttributesMesh.uv3: #define ATTRIBUTES_NEED_TEXCOORD3
$AttributesMesh.color: #define ATTRIBUTES_NEED_COLOR
$VaryingsMeshToPS.positionWS: #define VARYINGS_NEED_POSITION_WS
$VaryingsMeshToPS.positionRWS: #define VARYINGS_NEED_POSITION_WS
$VaryingsMeshToPS.normalWS: #define VARYINGS_NEED_TANGENT_TO_WORLD
$VaryingsMeshToPS.texCoord0: #define VARYINGS_NEED_TEXCOORD0
$VaryingsMeshToPS.texCoord1: #define VARYINGS_NEED_TEXCOORD1

$VertexDescriptionInputs.ViewSpaceBiTangent: output.ViewSpaceBiTangent = TransformWorldToViewDir(output.WorldSpaceBiTangent);
$VertexDescriptionInputs.TangentSpaceBiTangent: output.TangentSpaceBiTangent = float3(0.0f, 1.0f, 0.0f);
$VertexDescriptionInputs.ObjectSpacePosition: output.ObjectSpacePosition = input.positionOS;
$VertexDescriptionInputs.WorldSpacePosition: output.WorldSpacePosition = TransformObjectToWorld(input.positionOS);
$VertexDescriptionInputs.WorldSpacePosition: output.WorldSpacePosition = GetAbsolutePositionWS(TransformObjectToWorld(input.positionOS));
$VertexDescriptionInputs.ViewSpacePosition: output.ViewSpacePosition = TransformWorldToView(output.WorldSpacePosition);
$VertexDescriptionInputs.TangentSpacePosition: output.TangentSpacePosition = float3(0.0f, 0.0f, 0.0f);
$VertexDescriptionInputs.WorldSpaceViewDirection: output.WorldSpaceViewDirection = GetWorldSpaceNormalizeViewDir(output.WorldSpacePosition);

output.worldToTangent = k_identity3x3;
output.positionSS = input.positionCS; // input.positionCS is SV_Position
$FragInputs.positionWS: output.positionWS = input.positionWS;
$FragInputs.positionRWS: output.positionRWS = input.positionRWS;
$FragInputs.worldToTangent: output.worldToTangent = BuildWorldToTangent(input.tangentWS, input.normalWS);
$FragInputs.texCoord0: output.texCoord0 = input.texCoord0;
$FragInputs.texCoord1: output.texCoord1 = input.texCoord1;

$SurfaceDescriptionInputs.ViewSpaceNormal: output.ViewSpaceNormal = mul(output.WorldSpaceNormal, (float3x3) UNITY_MATRIX_I_V); // transposed multiplication by inverse matrix to handle normal scale
$SurfaceDescriptionInputs.TangentSpaceNormal: output.TangentSpaceNormal = float3(0.0f, 0.0f, 1.0f);
$SurfaceDescriptionInputs.WorldSpaceTangent: output.WorldSpaceTangent = input.worldToTangent[0].xyz;
$SurfaceDescriptionInputs.ObjectSpaceTangent: output.ObjectSpaceTangent = mul((float3x3) unity_WorldToObject, output.WorldSpaceTangent);
$SurfaceDescriptionInputs.ViewSpaceTangent: output.ViewSpaceTangent = mul((float3x3) UNITY_MATRIX_V, output.WorldSpaceTangent);
$SurfaceDescriptionInputs.ObjectSpaceTangent: output.ObjectSpaceTangent = TransformWorldToObjectDir(output.WorldSpaceTangent);
$SurfaceDescriptionInputs.ViewSpaceTangent: output.ViewSpaceTangent = TransformWorldToViewDir(output.WorldSpaceTangent);
$SurfaceDescriptionInputs.ObjectSpaceBiTangent: output.ObjectSpaceBiTangent = mul((float3x3) unity_WorldToObject, output.WorldSpaceBiTangent);
$SurfaceDescriptionInputs.ViewSpaceBiTangent: output.ViewSpaceBiTangent = mul((float3x3) UNITY_MATRIX_V, output.WorldSpaceBiTangent);
$SurfaceDescriptionInputs.ObjectSpaceBiTangent: output.ObjectSpaceBiTangent = TransformWorldToObjectDir(output.WorldSpaceBiTangent);
$SurfaceDescriptionInputs.ViewSpaceBiTangent: output.ViewSpaceBiTangent = TransformWorldToViewDir(output.WorldSpaceBiTangent);
$SurfaceDescriptionInputs.ObjectSpaceViewDirection: output.ObjectSpaceViewDirection = mul((float3x3) unity_WorldToObject, output.WorldSpaceViewDirection);
$SurfaceDescriptionInputs.ViewSpaceViewDirection: output.ViewSpaceViewDirection = mul((float3x3) UNITY_MATRIX_V, output.WorldSpaceViewDirection);
$SurfaceDescriptionInputs.ObjectSpaceViewDirection: output.ObjectSpaceViewDirection = TransformWorldToObjectDir(output.WorldSpaceViewDirection);
$SurfaceDescriptionInputs.ViewSpaceViewDirection: output.ViewSpaceViewDirection = TransformWorldToViewDir(output.WorldSpaceViewDirection);
$SurfaceDescriptionInputs.WorldSpacePosition: // TODO: FragInputs.positionWS is badly named -- it's camera relative, not in world space
$SurfaceDescriptionInputs.WorldSpacePosition: // we have to fix it up here to match graph input expectations
$SurfaceDescriptionInputs.WorldSpacePosition: output.WorldSpacePosition = input.positionWS + _WorldSpaceCameraPos;
$SurfaceDescriptionInputs.ObjectSpacePosition: output.ObjectSpacePosition = mul(unity_WorldToObject, float4(input.positionWS + _WorldSpaceCameraPos, 1.0f)).xyz;
$SurfaceDescriptionInputs.ViewSpacePosition: float4 posViewSpace = mul(UNITY_MATRIX_V, float4(input.positionWS, 1.0f));
$SurfaceDescriptionInputs.WorldSpacePosition: output.WorldSpacePosition = GetAbsolutePositionWS(input.positionRWS);
$SurfaceDescriptionInputs.ObjectSpacePosition: output.ObjectSpacePosition = TransformWorldToObject(input.positionRWS);
$SurfaceDescriptionInputs.ViewSpacePosition: float4 posViewSpace = TransformWorldToView(input.positionRWS);
$SurfaceDescriptionInputs.ScreenPosition: output.ScreenPosition = ComputeScreenPos(TransformWorldToHClip(input.positionWS), _ProjectionParams.x);
$SurfaceDescriptionInputs.ScreenPosition: output.ScreenPosition = ComputeScreenPos(TransformWorldToHClip(input.positionRWS), _ProjectionParams.x);
$SurfaceDescriptionInputs.VertexColor: output.VertexColor = input.color;
$SurfaceDescriptionInputs.FaceSign: output.FaceSign = input.isFrontFace;

9
com.unity.render-pipelines.high-definition/HDRP/Editor/ShaderGraph/HDUnlitSubShader.cs


using System.Collections.Generic;
using System.IO;
using System.Linq;
using UnityEngine.Experimental.Rendering;
using UnityEngine.Experimental.Rendering.HDPipeline;
namespace UnityEditor.Experimental.Rendering.HDPipeline
{

subShader.AddShaderChunk("}", true);
return subShader.GetShaderString(0);
}
public bool IsPipelineCompatible(RenderPipelineAsset renderPipelineAsset)
{
return renderPipelineAsset is HDRenderPipelineAsset;
}
}
}

2
com.unity.render-pipelines.high-definition/HDRP/HDRenderPipelineAsset.asset


enableVolumetric: 1
diffuseGlobalDimmer: 1
specularGlobalDimmer: 1
enableForwardRenderingOnly: 0
enableForwardRenderingOnly: 1
enableDepthPrepassWithDeferredRendering: 0
enableTransparentPrepass: 1
enableMotionVectors: 1

3
com.unity.render-pipelines.high-definition/HDRP/Lighting/Light/HDAdditionalLightData.cs


return new Color(r, g, b, 1.0f);
}
// When true, a mesh will be display to represent the area light (Can only be change in editor, component is added in Editor)
public bool displayAreaLightEmissiveMesh = false;
#if UNITY_EDITOR
private void DrawGizmos(bool selected)

15
com.unity.render-pipelines.high-definition/HDRP/Material/Decal/DecalUtilities.hlsl


decalStart = 0;
#endif
float3 positionWS = GetAbsolutePositionWS(posInput.positionWS);
float3 positionRWS = posInput.positionWS;
float3 positionWSDdx = ddx(positionWS);
float3 positionWSDdy = ddy(positionWS);
float3 positionRWSDdx = ddx(positionRWS);
float3 positionRWSDdy = ddy(positionRWS);
float3 positionDS = mul(decalData.worldToDecal, float4(positionWS, 1.0)).xyz;
// Get the relative world camera to decal matrix
float4x4 worldToDecal = ApplyCameraTranslationToInverseMatrix(decalData.worldToDecal);
float3 positionDS = mul(worldToDecal, float4(positionRWS, 1.0)).xyz;
positionDS = positionDS * float3(1.0, -1.0, 1.0) + float3(0.5, 0.0f, 0.5); // decal clip space
if ((all(positionDS.xyz > 0.0f) && all(1.0f - positionDS.xyz > 0.0f)))
{

float2 sampleMask = clamp(positionDS.xz * decalData.maskScaleBias.xy + decalData.maskScaleBias.zw, maskMin, maskMax);
// need to compute the mipmap LOD manually because we are sampling inside a loop
float3 positionDSDdx = mul(decalData.worldToDecal, float4(positionWSDdx, 0.0)).xyz; // transform the derivatives to decal space, any translation is irrelevant
float3 positionDSDdy = mul(decalData.worldToDecal, float4(positionWSDdy, 0.0)).xyz;
float3 positionDSDdx = mul(worldToDecal, float4(positionRWSDdx, 0.0)).xyz; // transform the derivatives to decal space, any translation is irrelevant
float3 positionDSDdy = mul(worldToDecal, float4(positionRWSDdy, 0.0)).xyz;
float2 sampleDiffuseDdx = positionDSDdx.xz * decalData.diffuseScaleBias.xy; // factor in the atlas scale
float2 sampleDiffuseDdy = positionDSDdy.xz * decalData.diffuseScaleBias.xy;

2
com.unity.render-pipelines.high-definition/HDRP/Material/GGXConvolution/RuntimeFilterIBL.cs


if (!m_GgxIblSampleData)
{
m_GgxIblSampleData = new RenderTexture(m_GgxIblMaxSampleCount, k_GgxIblMipCountMinusOne, 0, RenderTextureFormat.ARGBFloat, RenderTextureReadWrite.Linear);
m_GgxIblSampleData = new RenderTexture(m_GgxIblMaxSampleCount, k_GgxIblMipCountMinusOne, 0, RenderTextureFormat.ARGBHalf, RenderTextureReadWrite.Linear);
m_GgxIblSampleData.useMipMap = false;
m_GgxIblSampleData.autoGenerateMips = false;
m_GgxIblSampleData.enableRandomWrite = true;

2
com.unity.render-pipelines.high-definition/HDRP/Material/LayeredLit/LayeredLitData.hlsl


#endif
GetLayerTexCoord( input.texCoord0, input.texCoord1, input.texCoord2, input.texCoord3,
input.positionWS, input.worldToTangent[2].xyz, layerTexCoord);
input.positionRWS, input.worldToTangent[2].xyz, layerTexCoord);
}
void ApplyDisplacementTileScale(inout float height0, inout float height1, inout float height2, inout float height3)

8
com.unity.render-pipelines.high-definition/HDRP/Material/Lit/LitBuiltinData.hlsl


// TODO: Sample lightmap/lightprobe/volume proxy
// This should also handle projective lightmap
builtinData.bakeDiffuseLighting = SampleBakedGI(input.positionWS, bentNormalWS, input.texCoord1, input.texCoord2);
builtinData.bakeDiffuseLighting = SampleBakedGI(input.positionRWS, bentNormalWS, input.texCoord1, input.texCoord2);
// It is safe to call this function here as surfaceData have been filled
// We want to know if we must enable transmission on GI for SSS material, if the material have no SSS, this code will be remove by the compiler.

// however it will not optimize the lightprobe case due to the proxy volume relying on dynamic if (we rely must get right of this dynamic if), not a problem for SH9, but a problem for proxy volume.
// TODO: optimize more this code.
// Add GI transmission contribution by resampling the GI for inverted vertex normal
builtinData.bakeDiffuseLighting += SampleBakedGI(input.positionWS, -input.worldToTangent[2], input.texCoord1, input.texCoord2) * bsdfData.transmittance;
builtinData.bakeDiffuseLighting += SampleBakedGI(input.positionRWS, -input.worldToTangent[2], input.texCoord1, input.texCoord2) * bsdfData.transmittance;
float4 shadowMask = SampleShadowMask(input.positionWS, input.texCoord1);
float4 shadowMask = SampleShadowMask(input.positionRWS, input.texCoord1);
builtinData.shadowMask0 = shadowMask.x;
builtinData.shadowMask1 = shadowMask.y;
builtinData.shadowMask2 = shadowMask.z;

#endif
input.texCoord0, input.texCoord1, input.texCoord2, input.texCoord3, _UVMappingMaskEmissive, _UVMappingMaskEmissive,
_EmissiveColorMap_ST.xy, _EmissiveColorMap_ST.zw, float2(0.0, 0.0), float2(0.0, 0.0), 1.0, false,
input.positionWS, _TexWorldScaleEmissive,
input.positionRWS, _TexWorldScaleEmissive,
mappingType, layerTexCoord);
#ifndef LAYERED_LIT_SHADER

11
com.unity.render-pipelines.high-definition/HDRP/Material/Lit/LitData.hlsl


layerTexCoord.vertexTangentWS0 = input.worldToTangent[0];
layerTexCoord.vertexBitangentWS0 = input.worldToTangent[1];
// TODO: We should use relative camera position here - This will be automatic when we will move to camera relative space.
float3 dPdx = ddx_fine(input.positionWS);
float3 dPdy = ddy_fine(input.positionWS);
float3 dPdx = ddx_fine(input.positionRWS);
float3 dPdy = ddy_fine(input.positionRWS);
float3 sigmaX = dPdx - dot(dPdx, vertexNormalWS) * vertexNormalWS;
float3 sigmaY = dPdy - dot(dPdy, vertexNormalWS) * vertexNormalWS;

// in function with FragInputs input as parameters
// layerTexCoord must have been initialize to 0 outside of this function
void GetLayerTexCoord(float2 texCoord0, float2 texCoord1, float2 texCoord2, float2 texCoord3,
float3 positionWS, float3 vertexNormalWS, inout LayerTexCoord layerTexCoord)
float3 positionRWS, float3 vertexNormalWS, inout LayerTexCoord layerTexCoord)
{
layerTexCoord.vertexNormalWS = vertexNormalWS;
layerTexCoord.triplanarWeights = ComputeTriplanarWeights(vertexNormalWS);

// Be sure that the compiler is aware that we don't use UV1 to UV3 for main layer so it can optimize code
ComputeLayerTexCoord( texCoord0, texCoord1, texCoord2, texCoord3, _UVMappingMask, _UVDetailsMappingMask,
_BaseColorMap_ST.xy, _BaseColorMap_ST.zw, _DetailMap_ST.xy, _DetailMap_ST.zw, 1.0, _LinkDetailsWithBase,
positionWS, _TexWorldScale,
positionRWS, _TexWorldScale,
mappingType, layerTexCoord);
}

#endif
GetLayerTexCoord( input.texCoord0, input.texCoord1, input.texCoord2, input.texCoord3,
input.positionWS, input.worldToTangent[2].xyz, layerTexCoord);
input.positionRWS, input.worldToTangent[2].xyz, layerTexCoord);
}
#include "LitDataDisplacement.hlsl"

4
com.unity.render-pipelines.high-definition/HDRP/Material/Lit/LitDataIndividualLayer.hlsl


// scale and bias for base and detail + global tiling factor (for layered lit only)
float2 texScale, float2 texBias, float2 texScaleDetails, float2 texBiasDetails, float additionalTiling, float linkDetailsWithBase,
// parameter for planar/triplanar
float3 positionWS, float worldScale,
float3 positionRWS, float worldScale,
// mapping type and output
int mappingType, inout LayerTexCoord layerTexCoord)
{

float2 uvXY;
float2 uvZY;
GetTriplanarCoordinate(GetAbsolutePositionWS(positionWS) * worldScale, uvXZ, uvXY, uvZY);
GetTriplanarCoordinate(GetAbsolutePositionWS(positionRWS) * worldScale, uvXZ, uvXY, uvZY);
// Planar is just XZ of triplanar
if (mappingType == UV_MAPPING_PLANAR)

21
com.unity.render-pipelines.high-definition/HDRP/Material/Lit/LitDataMeshModification.hlsl


float3 GetVertexDisplacement(float3 positionWS, float3 normalWS, float2 texCoord0, float2 texCoord1, float2 texCoord2, float2 texCoord3, float4 vertexColor)
// Note: positionWS can be either in camera relative space or not
float3 GetVertexDisplacement(float3 positionRWS, float3 normalWS, float2 texCoord0, float2 texCoord1, float2 texCoord2, float2 texCoord3, float4 vertexColor)
GetLayerTexCoord(texCoord0, texCoord1, texCoord2, texCoord3, positionWS, normalWS, layerTexCoord);
GetLayerTexCoord(texCoord0, texCoord1, texCoord2, texCoord3, positionRWS, normalWS, layerTexCoord);
// TODO: do this algorithm for lod fetching as lod not available in vertex/domain shader
// http://www.sebastiansylvan.com/post/the-problem-with-tessellation-in-directx-11/

void ApplyVertexModification(AttributesMesh input, float3 normalWS, inout float3 positionWS, float4 time)
// Note: positionWS can be either in camera relative space or not
void ApplyVertexModification(AttributesMesh input, float3 normalWS, inout float3 positionRWS, float4 time)
positionWS += GetVertexDisplacement(positionWS, normalWS,
positionRWS += GetVertexDisplacement(positionRWS, normalWS,
#ifdef ATTRIBUTES_NEED_TEXCOORD0
input.uv0,
#else

#endif
#ifdef _VERTEX_WIND
float3 rootWP = mul(GetObjectToWorldMatrix(), float4(0, 0, 0, 1)).xyz;
ApplyWindDisplacement(positionWS, normalWS, rootWP, _Stiffness, _Drag, _ShiverDrag, _ShiverDirectionality, _InitialBend, input.color.a, time);
// current wind implementation is in absolute world space
float3 rootWP = GetObjectAbsolutePositionWS();
float3 absolutePositionWS = GetAbsolutePositionWS(positionRWS);
ApplyWindDisplacement(absolutePositionWS, normalWS, rootWP, _Stiffness, _Drag, _ShiverDrag, _ShiverDirectionality, _InitialBend, input.color.a, time);
positionRWS = GetCameraRelativePositionWS(absolutePositionWS);
#endif
}

// y - 2->0 edge
// z - 0->1 edge
// w - inside tessellation factor
void ApplyTessellationModification(VaryingsMeshToDS input, float3 normalWS, inout float3 positionWS)
void ApplyTessellationModification(VaryingsMeshToDS input, float3 normalWS, inout float3 positionRWS)
positionWS += GetVertexDisplacement(positionWS, normalWS,
positionRWS += GetVertexDisplacement(positionRWS, normalWS,
#ifdef VARYINGS_DS_NEED_TEXCOORD0
input.texCoord0,
#else

16
com.unity.render-pipelines.high-definition/HDRP/Material/MaterialUtilities.hlsl


// Return camera relative probe volume world to object transformation
float4x4 GetProbeVolumeWorldToObject()
{
return ApplyCameraTranslationToInverseMatrix(unity_ProbeVolumeWorldToObject);
}
float3 SampleBakedGI(float3 positionWS, float3 normalWS, float2 uvStaticLightmap, float2 uvDynamicLightmap)
float3 SampleBakedGI(float3 positionRWS, float3 normalWS, float2 uvStaticLightmap, float2 uvDynamicLightmap)
{
// If there is no lightmap, it assume lightprobe
#if !defined(LIGHTMAP_ON) && !defined(DYNAMICLIGHTMAP_ON)

}
else
{
// TODO: We use GetAbsolutePositionWS(positionWS) to handle the camera relative case here but this should be part of the unity_ProbeVolumeWorldToObject matrix on C++ side (sadly we can't modify it for HDRenderPipeline...)
return SampleProbeVolumeSH4(TEXTURE3D_PARAM(unity_ProbeVolumeSH, samplerunity_ProbeVolumeSH), GetAbsolutePositionWS(positionWS), normalWS, unity_ProbeVolumeWorldToObject,
return SampleProbeVolumeSH4(TEXTURE3D_PARAM(unity_ProbeVolumeSH, samplerunity_ProbeVolumeSH), positionRWS, normalWS, GetProbeVolumeWorldToObject(),
unity_ProbeVolumeParams.y, unity_ProbeVolumeParams.z, unity_ProbeVolumeMin, unity_ProbeVolumeSizeInv);
}

#endif
}
float4 SampleShadowMask(float3 positionWS, float2 uvStaticLightmap) // normalWS not use for now
float4 SampleShadowMask(float3 positionRWS, float2 uvStaticLightmap) // normalWS not use for now
{
#if defined(LIGHTMAP_ON)
float2 uv = uvStaticLightmap * unity_LightmapST.xy + unity_LightmapST.zw;

if (unity_ProbeVolumeParams.x == 1.0)
{
// TODO: We use GetAbsolutePositionWS(positionWS) to handle the camera relative case here but this should be part of the unity_ProbeVolumeWorldToObject matrix on C++ side (sadly we can't modify it for HDRenderPipeline...)
rawOcclusionMask = SampleProbeOcclusion(TEXTURE3D_PARAM(unity_ProbeVolumeSH, samplerunity_ProbeVolumeSH), GetAbsolutePositionWS(positionWS), unity_ProbeVolumeWorldToObject,
rawOcclusionMask = SampleProbeOcclusion(TEXTURE3D_PARAM(unity_ProbeVolumeSH, samplerunity_ProbeVolumeSH), positionRWS, GetProbeVolumeWorldToObject(),
unity_ProbeVolumeParams.y, unity_ProbeVolumeParams.z, unity_ProbeVolumeMin, unity_ProbeVolumeSizeInv);
}
else

10
com.unity.render-pipelines.high-definition/HDRP/Material/StackLit/StackLit.hlsl


#endif
// perceptualRoughness is use as input and output here
GetGGXAnisotropicModifiedNormalAndRoughness(bsdfData.bitangentWS, bsdfData.tangentWS, N, V, preLightData.iblAnisotropy[0], preLightData.iblPerceptualRoughness[BASE_LOBEA_IDX], iblN[BASE_LOBEA_IDX], preLightData.iblPerceptualRoughness[BASE_LOBEA_IDX]);
GetGGXAnisotropicModifiedNormalAndRoughness(bsdfData.bitangentWS, bsdfData.tangentWS, N, V, preLightData.iblAnisotropy[1], preLightData.iblPerceptualRoughness[BASE_LOBEB_IDX], iblN[BASE_LOBEB_IDX], preLightData.iblPerceptualRoughness[BASE_LOBEB_IDX]);
float3 outNormal;
float outPerceptualRoughness;
GetGGXAnisotropicModifiedNormalAndRoughness(bsdfData.bitangentWS, bsdfData.tangentWS, N[0], V, preLightData.iblAnisotropy[0], preLightData.iblPerceptualRoughness[BASE_LOBEA_IDX], outNormal, outPerceptualRoughness);
iblN[BASE_LOBEA_IDX] = outNormal;
preLightData.iblPerceptualRoughness[BASE_LOBEA_IDX] = outPerceptualRoughness;
GetGGXAnisotropicModifiedNormalAndRoughness(bsdfData.bitangentWS, bsdfData.tangentWS, N[0], V, preLightData.iblAnisotropy[1], preLightData.iblPerceptualRoughness[BASE_LOBEB_IDX], outNormal, outPerceptualRoughness);
iblN[BASE_LOBEB_IDX] = outNormal;
preLightData.iblPerceptualRoughness[BASE_LOBEB_IDX] = outPerceptualRoughness;
iblN[COAT_LOBE_IDX] = N[COAT_NORMAL_IDX]; // no anisotropy for coat.
}

104
com.unity.render-pipelines.high-definition/HDRP/Material/StackLit/StackLit.shader


_MetallicMapUV("Metallic Map UV", Float) = 0.0
_MetallicMapUVLocal("Metallic Map UV Local", Float) = 0.0
_MetallicMapChannel("Metallic Map Channel", Float) = 0.0
_MetallicMapChannelMask("Metallic Map Channel Mask", Vector) = (1, 0, 0, 0)
_MetallicRemap("Metallic Remap", Vector) = (0, 1, 0, 0)
[HideInInspector] _MetallicRange("Metallic Range", Vector) = (0, 1, 0, 0)
[HideInInspector] _MetallicMapChannelMask("Metallic Map Channel Mask", Vector) = (1, 0, 0, 0)
_MetallicMapRemap("Metallic Remap", Vector) = (0, 1, 0, 0)
[HideInInspector] _MetallicMapRange("Metallic Range", Vector) = (0, 1, 0, 0)
_DielectricIor("DielectricIor IOR", Range(1.0, 2.5)) = 1.5

_SmoothnessAUseMap("SmoothnessA Use Map", Float) = 0
_SmoothnessAMapUV("SmoothnessA Map UV", Float) = 0.0
_SmoothnessAMapUVLocal("_SmoothnessA Map UV Local", Float) = 0.0
_SmoothnessAMapUVLocal("SmoothnessA Map UV Local", Float) = 0.0
_SmoothnessAMapChannelMask("SmoothnessA Map Channel Mask", Vector) = (1, 0, 0, 0)
_SmoothnessARemap("SmoothnessA Remap", Vector) = (0, 1, 0, 0)
[ToggleUI] _SmoothnessARemapInverted("Invert SmoothnessA Remap", Float) = 0.0
[HideInInspector] _SmoothnessARange("SmoothnessA Range", Vector) = (0, 1, 0, 0)
[HideInInspector] _SmoothnessAMapChannelMask("SmoothnessA Map Channel Mask", Vector) = (1, 0, 0, 0)
_SmoothnessAMapRemap("SmoothnessA Remap", Vector) = (0, 1, 0, 0)
[ToggleUI] _SmoothnessAMapRemapInverted("Invert SmoothnessA Remap", Float) = 0.0
[HideInInspector] _SmoothnessAMapRange("SmoothnessA Range", Vector) = (0, 1, 0, 0)
[ToggleUI] _EnableDualSpecularLobe("Enable Dual Specular Lobe", Float) = 0.0 // UI only
[HideInInspector] _SmoothnessBMapShow("SmoothnessB Map Show", Float) = 0

_SmoothnessBMapUV("SmoothnessB Map UV", Float) = 0.0
_SmoothnessAMapUVLocal("_SmoothnessB Map UV Local", Float) = 0.0
_SmoothnessBMapChannel("SmoothnessB Map Channel", Float) = 0.0
_SmoothnessBMapChannelMask("SmoothnessB Map Channel Mask", Vector) = (1, 0, 0, 0)
_SmoothnessBRemap("SmoothnessB Remap", Vector) = (0, 1, 0, 0)
[ToggleUI] _SmoothnessBRemapInverted("Invert SmoothnessB Remap", Float) = 0.0
[HideInInspector] _SmoothnessBRange("SmoothnessB Range", Vector) = (0, 1, 0, 0)
[HideInInspector] _SmoothnessBMapChannelMask("SmoothnessB Map Channel Mask", Vector) = (1, 0, 0, 0)
_SmoothnessBMapRemap("SmoothnessB Remap", Vector) = (0, 1, 0, 0)
[ToggleUI] _SmoothnessBMapRemapInverted("Invert SmoothnessB Remap", Float) = 0.0
[HideInInspector] _SmoothnessBMapRange("SmoothnessB Range", Vector) = (0, 1, 0, 0)
_LobeMix("Lobe Mix", Range(0.0, 1.0)) = 0
[ToggleUI] _VlayerRecomputePerLight("Vlayer Recompute Per Light", Float) = 0.0 // UI only

_AnisotropyMapUV("Anisotropy Map UV", Float) = 0.0
_AnisotropyMapUVLocal("Anisotropy Map UV Local", Float) = 0.0
_AnisotropyMapChannel("Anisotropy Map Channel", Float) = 0.0
_AnisotropyMapChannelMask("Anisotropy Map Channel Mask", Vector) = (1, 0, 0, 0)
_AnisotropyRemap("Anisotropy Remap", Vector) = (0, 1, 0, 0)
[HideInInspector] _AnisotropyRange("Anisotropy Range", Vector) = (0, 1, 0, 0)
[HideInInspector] _AnisotropyMapChannelMask("Anisotropy Map Channel Mask", Vector) = (1, 0, 0, 0)
_AnisotropyMapRemap("Anisotropy Remap", Vector) = (0, 1, 0, 0)
[HideInInspector] _AnisotropyMapRange("Anisotropy Range", Vector) = (0, 1, 0, 0)
[ToggleUI] _EnableCoat("Enable Coat", Float) = 0.0 // UI only
[HideInInspector] _CoatSmoothnessMapShow("CoatSmoothness Show", Float) = 0

_CoatSmoothnessMapUV("CoatSmoothness Map UV", Float) = 0.0
_CoatSmoothnessMapUVLocal("CoatSmoothness Map UV Local", Float) = 0.0
_CoatSmoothnessMapChannel("CoatSmoothness Map Channel", Float) = 0.0
_CoatSmoothnessMapChannelMask("CoatSmoothness Map Channel Mask", Vector) = (1, 0, 0, 0)
_CoatSmoothnessRemap("CoatSmoothness Remap", Vector) = (0, 1, 0, 0)
[ToggleUI] _CoatSmoothnessRemapInverted("Invert CoatSmoothness Remap", Float) = 0.0
[HideInInspector] _CoatSmoothnessRange("CoatSmoothness Range", Vector) = (0, 1, 0, 0)
[HideInInspector] _CoatSmoothnessMapChannelMask("CoatSmoothness Map Channel Mask", Vector) = (1, 0, 0, 0)
_CoatSmoothnessMapRemap("CoatSmoothness Remap", Vector) = (0, 1, 0, 0)
[ToggleUI] _CoatSmoothnessMapRemapInverted("Invert CoatSmoothness Remap", Float) = 0.0
[HideInInspector] _CoatSmoothnessMapRange("CoatSmoothness Range", Vector) = (0, 1, 0, 0)
_CoatIor("Coat IOR", Range(1.0001, 2.0)) = 1.5
_CoatThickness("Coat Thickness", Range(0.0, 0.99)) = 0.0

_NormalMap("NormalMap", 2D) = "bump" {} // Tangent space normal map
_NormalMapUV("NormalMapUV", Float) = 0.0
_NormalMapUVLocal("NormalMapUV Local", Float) = 0.0
_NormalMapObjSpace("NormalMapUV Local", Float) = 0.0
_NormalMapObjSpace("NormalMapObjSpace", Float) = 0.0
_NormalScale("Normal Scale", Range(0.0, 2.0)) = 1
[HideInInspector] _AmbientOcclusionMapShow("AmbientOcclusion Map Show", Float) = 0

_AmbientOcclusionMapUV("AmbientOcclusion Map UV", Float) = 0.0
_AmbientOcclusionMapUVLocal("AmbientOcclusion Map UV Local", Float) = 0.0
_AmbientOcclusionMapChannel("AmbientOcclusion Map Channel", Float) = 0.0
_AmbientOcclusionMapChannelMask("AmbientOcclusion Map Channel Mask", Vector) = (1, 0, 0, 0)
_AmbientOcclusionRemap("AmbientOcclusion Remap", Vector) = (0, 1, 0, 0)
[HideInInspector] _AmbientOcclusionRange("AmbientOcclusion Range", Vector) = (0, 1, 0, 0)
[HideInInspector] _AmbientOcclusionMapChannelMask("AmbientOcclusion Map Channel Mask", Vector) = (1, 0, 0, 0)
_AmbientOcclusionMapRemap("AmbientOcclusion Remap", Vector) = (0, 1, 0, 0)
[HideInInspector] _AmbientOcclusionMapRange("AmbientOcclusion Range", Vector) = (0, 1, 0, 0)
[HideInInspector] _EmissiveColorMapShow("Emissive Color Map Show", Float) = 0.0
[HDR] _EmissiveColor("EmissiveColor", Color) = (0, 0, 0)

_SubsurfaceMaskMapUV("Subsurface Mask Map UV", Float) = 0.0
_SubsurfaceMaskMapUVLocal("Subsurface Mask UV Local", Float) = 0.0
_SubsurfaceMaskMapChannel("Subsurface Mask Map Channel", Float) = 0.0
_SubsurfaceMaskMapChannelMask("Subsurface Mask Map Channel Mask", Vector) = (1, 0, 0, 0)
_SubsurfaceMaskRemap("Subsurface Mask Remap", Vector) = (0, 1, 0, 0)
[HideInInspector] _SubsurfaceMaskRange("Subsurface Mask Range", Vector) = (0, 1, 0, 0)
[HideInInspector] _SubsurfaceMaskMapChannelMask("Subsurface Mask Map Channel Mask", Vector) = (1, 0, 0, 0)
_SubsurfaceMaskMapRemap("Subsurface Mask Remap", Vector) = (0, 1, 0, 0)
[HideInInspector] _SubsurfaceMaskMapRange("Subsurface Mask Range", Vector) = (0, 1, 0, 0)
[ToggleUI] _EnableTransmission("Enable Transmission", Float) = 0.0
[HideInInspector] _ThicknessMapShow("Thickness Show", Float) = 0

_ThicknessMapUV("Thickness Map UV", Float) = 0.0
_ThicknessMapUVLocal("Thickness Map UV Local", Float) = 0.0
_ThicknessMapChannel("Thickness Map Channel", Float) = 0.0
_ThicknessMapChannelMask("Thickness Map Channel Mask", Vector) = (1, 0, 0, 0)
_ThicknessRemap("Thickness Remap", Vector) = (0, 1, 0, 0)
[ToggleUI] _ThicknessRemapInverted("Invert Thickness Remap", Float) = 0.0
[HideInInspector] _ThicknessRange("Thickness Range", Vector) = (0, 1, 0, 0)
[HideInInspector] _ThicknessMapChannelMask("Thickness Map Channel Mask", Vector) = (1, 0, 0, 0)
_ThicknessMapRemap("Thickness Remap", Vector) = (0, 1, 0, 0)
[ToggleUI] _ThicknessMapRemapInverted("Invert Thickness Remap", Float) = 0.0
[HideInInspector] _ThicknessMapRange("Thickness Range", Vector) = (0, 1, 0, 0)
[ToggleUI] _EnableIridescence("Enable Iridescence", Float) = 0.0 // UI only
_IridescenceIor("TopIOR over iridescent layer", Range(1.0, 2.0)) = 1.5

_IridescenceThicknessMapUV("IridescenceThickness Map UV", Float) = 0.0
_IridescenceThicknessMapLocal("IridescenceThickness Map UV Local", Float) = 0.0
_IridescenceThicknessMapChannel("IridescenceThickness Map Channel", Float) = 0.0
_IridescenceThicknessMapChannelMask("IridescenceThickness Map Channel Mask", Vector) = (1, 0, 0, 0)
_IridescenceThicknessRemap("IridescenceThickness Remap", Vector) = (0, 1, 0, 0)
[ToggleUI] _IridescenceThicknessRemapInverted("Invert IridescenceThickness Remap", Float) = 0.0
[HideInInspector] _IridescenceThicknessRange("IridescenceThickness Range", Vector) = (0, 1, 0, 0)
[HideInInspector] _IridescenceThicknessMapChannelMask("IridescenceThickness Map Channel Mask", Vector) = (1, 0, 0, 0)
_IridescenceThicknessMapRemap("IridescenceThickness Remap", Vector) = (0, 1, 0, 0)
[ToggleUI] _IridescenceThicknessMapRemapInverted("Invert IridescenceThickness Remap", Float) = 0.0
[HideInInspector] _IridescenceThicknessMapRange("IridescenceThickness Range", Vector) = (0, 1, 0, 0)
[HideInInspector] _IridescenceMaskMapShow("Iridescence Mask Map Show", Float) = 0
_IridescenceMask("Iridescence Mask", Range(0.0, 1.0)) = 1.0

_IridescenceMaskMapUVLocal("Iridescence Mask UV Local", Float) = 0.0
_IridescenceMaskMapChannel("Iridescence Mask Map Channel", Float) = 0.0
_IridescenceMaskMapChannelMask("Iridescence Mask Map Channel Mask", Vector) = (1, 0, 0, 0)
_IridescenceMaskRemap("Iridescence Mask Remap", Vector) = (0, 1, 0, 0)
[HideInInspector] _IridescenceMaskRange("Iridescence Mask Range", Vector) = (0, 1, 0, 0)
[HideInInspector] _IridescenceMaskMapChannelMask("Iridescence Mask Map Channel Mask", Vector) = (1, 0, 0, 0)
_IridescenceMaskMapRemap("Iridescence Mask Remap", Vector) = (0, 1, 0, 0)
[HideInInspector] _IridescenceMaskMapRange("Iridescence Mask Range", Vector) = (0, 1, 0, 0)
// Detail map (mask, normal, smoothness)
[ToggleUI] _EnableDetails("Enable Details", Float) = 0.0
[HideInInspector] _DetailMaskMapShow("DetailMask Map Show", Float) = 0
_DetailMaskMap("DetailMask Map", 2D) = "white" {}
_DetailMaskMapUV("DetailMask Map UV", Float) = 0.0
_DetailMaskMapUVLocal("DetailMask Map UV Local", Float) = 0.0
_DetailMaskMapChannel("DetailMask Map Channel", Float) = 0.0
[HideInInspector] _DetailMaskMapChannelMask("DetailSmoothness Map Channel Mask", Vector) = (1, 0, 0, 0)
[HideInInspector] _DetailNormalMapShow("DetailNormalMap Show", Float) = 0.0
_DetailNormalMap("DetailNormalMap", 2D) = "bump" {} // Tangent space normal map
_DetailNormalMapUV("DetailNormalMapUV", Float) = 0.0
_DetailNormalMapUVLocal("DetailNormalMapUV Local", Float) = 0.0
_DetailNormalScale("DetailNormal Scale", Range(0.0, 2.0)) = 1
[HideInInspector] _DetailSmoothnessMapShow("DetailSmoothness Map Show", Float) = 0
_DetailSmoothnessMap("DetailSmoothness Map", 2D) = "grey" {} // Neutral is 0.5 for detail map
_DetailSmoothnessMapUV("DetailSmoothness Map UV", Float) = 0.0
_DetailSmoothnessMapUVLocal("DetailSmoothness Map UV Local", Float) = 0.0
_DetailSmoothnessMapChannel("DetailSmoothness Map Channel", Float) = 0.0
[HideInInspector] _DetailSmoothnessMapChannelMask("DetailSmoothness Map Channel Mask", Vector) = (1, 0, 0, 0)
_DetailSmoothnessMapRemap("DetailSmoothness Remap", Vector) = (0, 1, 0, 0)
[ToggleUI] _DetailSmoothnessMapRemapInverted("Invert SmoothnessA Remap", Float) = 0.0
[HideInInspector] _DetailSmoothnessMapRange("DetailSmoothness Range", Vector) = (0, 1, 0, 0)
_DetailSmoothnessScale("DetailSmoothness Scale", Range(0.0, 2.0)) = 1
// Distortion
_DistortionVectorMap("DistortionVectorMap", 2D) = "black" {}
[ToggleUI] _DistortionEnable("Enable Distortion", Float) = 0.0
[ToggleUI] _DistortionOnly("Distortion Only", Float) = 0.0

// Sections show values.
[HideInInspector] _MaterialFeaturesShow("_MaterialFeaturesShow", Float) = 1.0
[HideInInspector] _StandardShow("_StandardShow", Float) = 0.0
[HideInInspector] _DetailsShow("_DetailsShow", Float) = 0.0
[HideInInspector] _EmissiveShow("_EmissiveShow", Float) = 0.0
[HideInInspector] _CoatShow("_CoatShow", Float) = 0.0
[HideInInspector] _DebugShow("_DebugShow", Float) = 0.0

#pragma shader_feature _ALPHATEST_ON
#pragma shader_feature _DOUBLESIDED_ON
#pragma shader_feature _NORMALMAP_TANGENT_SPACE
#pragma shader_feature _USE_DETAILMAP
#pragma shader_feature _USE_UV2
#pragma shader_feature _USE_UV3
#pragma shader_feature _USE_TRIPLANAR

68
com.unity.render-pipelines.high-definition/HDRP/Material/StackLit/StackLitData.hlsl


void InitializeMappingData(FragInputs input, out TextureUVMapping uvMapping)
{
float3 position = GetAbsolutePositionWS(input.positionWS);
float2 uvXZ;
float2 uvXY;
float2 uvZY;

uvMapping.texcoords[TEXCOORD_INDEX_UV3][0] = uvMapping.texcoords[TEXCOORD_INDEX_UV3][1] = input.texCoord3.xy;
// planar/triplanar
GetTriplanarCoordinate(position, uvXZ, uvXY, uvZY);
GetTriplanarCoordinate(GetAbsolutePositionWS(input.positionRWS), uvXZ, uvXY, uvZY);
position = TransformWorldToObject(position);
GetTriplanarCoordinate(position, uvXZ, uvXY, uvZY);
GetTriplanarCoordinate(TransformWorldToObject(input.positionRWS), uvXZ, uvXY, uvZY);
uvMapping.texcoords[TEXCOORD_INDEX_PLANAR_XY][1] = uvXY;
uvMapping.texcoords[TEXCOORD_INDEX_PLANAR_YZ][1] = uvZY;
uvMapping.texcoords[TEXCOORD_INDEX_PLANAR_ZX][1] = uvXZ;

uvMapping.vertexTangentWS[0] = input.worldToTangent[0];
uvMapping.vertexBitangentWS[0] = input.worldToTangent[1];
float3 dPdx = ddx_fine(input.positionWS);
float3 dPdy = ddy_fine(input.positionWS);
float3 dPdx = ddx_fine(input.positionRWS);
float3 dPdy = ddy_fine(input.positionRWS);
float3 sigmaX = dPdx - dot(dPdx, vertexNormalWS) * vertexNormalWS;
float3 sigmaY = dPdy - dot(dPdy, vertexNormalWS) * vertexNormalWS;

}
#define SAMPLE_TEXTURE2D_SCALE_BIAS(name) SampleTexture2DTriplanarScaleBias(name, sampler##name, name##UV, name##UVLocal, name##_ST, uvMapping)
#define SAMPLE_TEXTURE2D_NORMAL_SCALE_BIAS(name, scale) SampleTexture2DTriplanarNormalScaleBias(name, sampler##name, name##UV, name##UVLocal, name##_ST, name##ObjSpace, uvMapping, scale)
#define SAMPLE_TEXTURE2D_NORMAL_SCALE_BIAS(name, scale, objSpace) SampleTexture2DTriplanarNormalScaleBias(name, sampler##name, name##UV, name##UVLocal, name##_ST, objSpace, uvMapping, scale)
//-----------------------------------------------------------------------------
// GetSurfaceAndBuiltinData

// Standard
surfaceData.baseColor = SAMPLE_TEXTURE2D_SCALE_BIAS(_BaseColorMap).rgb * _BaseColor.rgb;
float4 gradient = SAMPLE_TEXTURE2D_NORMAL_SCALE_BIAS(_NormalMap, _NormalScale);
float4 gradient = SAMPLE_TEXTURE2D_NORMAL_SCALE_BIAS(_NormalMap, _NormalScale, _NormalMapObjSpace);
surfaceData.perceptualSmoothnessA = lerp(_SmoothnessARange.x, _SmoothnessARange.y, surfaceData.perceptualSmoothnessA);
surfaceData.perceptualSmoothnessA = lerp(_SmoothnessAMapRange.x, _SmoothnessAMapRange.y, surfaceData.perceptualSmoothnessA);
surfaceData.metallic = lerp(_MetallicRange.x, _MetallicRange.y, surfaceData.metallic);
surfaceData.metallic = lerp(_MetallicMapRange.x, _MetallicMapRange.y, surfaceData.metallic);
surfaceData.ambientOcclusion = lerp(_AmbientOcclusionRange.x, _AmbientOcclusionRange.y, surfaceData.ambientOcclusion);
surfaceData.ambientOcclusion = lerp(_AmbientOcclusionMapRange.x, _AmbientOcclusionMapRange.y, surfaceData.ambientOcclusion);
surfaceData.ambientOcclusion = lerp(_AmbientOcclusion, surfaceData.ambientOcclusion, _AmbientOcclusionUseMap);
// These static material feature allow compile time optimization

surfaceData.materialFeatures |= MATERIALFEATUREFLAGS_STACK_LIT_DUAL_SPECULAR_LOBE;
surfaceData.lobeMix = _LobeMix;
surfaceData.perceptualSmoothnessB = dot(SAMPLE_TEXTURE2D_SCALE_BIAS(_SmoothnessBMap), _SmoothnessBMapChannelMask);
surfaceData.perceptualSmoothnessB = lerp(_SmoothnessBRange.x, _SmoothnessBRange.y, surfaceData.perceptualSmoothnessB);
surfaceData.perceptualSmoothnessB = lerp(_SmoothnessBMapRange.x, _SmoothnessBMapRange.y, surfaceData.perceptualSmoothnessB);
surfaceData.perceptualSmoothnessB = lerp(_SmoothnessB, surfaceData.perceptualSmoothnessB, _SmoothnessBUseMap);
#else
surfaceData.lobeMix = 0.0;

surfaceData.materialFeatures |= MATERIALFEATUREFLAGS_STACK_LIT_ANISOTROPY;
// TODO: manage anistropy map
//surfaceData.anisotropy = dot(SAMPLE_TEXTURE2D_SCALE_BIAS(_AnistropyMap), _AnistropyMapChannelMask);
//surfaceData.anisotropy = lerp(_AnistropyRange.x, _AnistropyRange.y, surfaceData.anisotropy);
//surfaceData.anisotropy = lerp(_AnistropyMapRange.x, _AnistropyMapRange.y, surfaceData.anisotropy);
surfaceData.anisotropy = _Anisotropy; // In all cases we must multiply anisotropy with the map
#else
surfaceData.anisotropy = 0.0;

#ifdef _MATERIAL_FEATURE_COAT
surfaceData.materialFeatures |= MATERIALFEATUREFLAGS_STACK_LIT_COAT;
surfaceData.coatPerceptualSmoothness = dot(SAMPLE_TEXTURE2D_SCALE_BIAS(_CoatSmoothnessMap), _CoatSmoothnessMapChannelMask);
surfaceData.coatPerceptualSmoothness = lerp(_CoatSmoothnessRange.x, _CoatSmoothnessRange.y, surfaceData.coatPerceptualSmoothness);
surfaceData.coatPerceptualSmoothness = lerp(_CoatSmoothnessMapRange.x, _CoatSmoothnessMapRange.y, surfaceData.coatPerceptualSmoothness);
surfaceData.coatPerceptualSmoothness = lerp(_CoatSmoothness, surfaceData.coatPerceptualSmoothness, _CoatSmoothnessUseMap);
surfaceData.coatIor = _CoatIor;
surfaceData.coatThickness = _CoatThickness;

surfaceData.materialFeatures |= MATERIALFEATUREFLAGS_STACK_LIT_COAT_NORMAL_MAP;
coatGradient = SAMPLE_TEXTURE2D_NORMAL_SCALE_BIAS(_CoatNormalMap, _CoatNormalScale);
coatGradient = SAMPLE_TEXTURE2D_NORMAL_SCALE_BIAS(_CoatNormalMap, _CoatNormalScale, _CoatNormalMapObjSpace);
#endif
#else

surfaceData.materialFeatures |= MATERIALFEATUREFLAGS_STACK_LIT_IRIDESCENCE;
surfaceData.iridescenceIor = _IridescenceIor;
surfaceData.iridescenceThickness = dot(SAMPLE_TEXTURE2D_SCALE_BIAS(_IridescenceThicknessMap), _IridescenceThicknessMapChannelMask);
surfaceData.iridescenceThickness = lerp(_IridescenceThicknessRange.x, _IridescenceThicknessRange.y, surfaceData.iridescenceThickness);
surfaceData.iridescenceThickness = lerp(_IridescenceThicknessMapRange.x, _IridescenceThicknessMapRange.y, surfaceData.iridescenceThickness);
surfaceData.iridescenceMask = lerp(_IridescenceMaskRange.x, _IridescenceMaskRange.y, surfaceData.iridescenceMask);
surfaceData.iridescenceMask = lerp(_IridescenceMaskMapRange.x, _IridescenceMaskMapRange.y, surfaceData.iridescenceMask);
surfaceData.iridescenceMask = lerp(_IridescenceMask, surfaceData.iridescenceMask, _IridescenceMaskUseMap);
#else

#ifdef _MATERIAL_FEATURE_SUBSURFACE_SCATTERING
surfaceData.materialFeatures |= MATERIALFEATUREFLAGS_STACK_LIT_SUBSURFACE_SCATTERING;
surfaceData.subsurfaceMask = dot(SAMPLE_TEXTURE2D_SCALE_BIAS(_SubsurfaceMaskMap), _SubsurfaceMaskMapChannelMask);
surfaceData.subsurfaceMask = lerp(_SubsurfaceMaskRange.x, _SubsurfaceMaskRange.y, surfaceData.subsurfaceMask);
surfaceData.subsurfaceMask = lerp(_SubsurfaceMaskMapRange.x, _SubsurfaceMaskMapRange.y, surfaceData.subsurfaceMask);
surfaceData.subsurfaceMask = lerp(_SubsurfaceMask, surfaceData.subsurfaceMask, _SubsurfaceMaskUseMap);
#else
surfaceData.subsurfaceMask = 0.0;

surfaceData.materialFeatures |= MATERIALFEATUREFLAGS_STACK_LIT_TRANSMISSION;
surfaceData.thickness = dot(SAMPLE_TEXTURE2D_SCALE_BIAS(_ThicknessMap), _ThicknessMapChannelMask);
surfaceData.thickness = lerp(_ThicknessRange.x, _ThicknessRange.y, surfaceData.thickness);
surfaceData.thickness = lerp(_ThicknessMapRange.x, _ThicknessMapRange.y, surfaceData.thickness);
#ifdef _USE_DETAILMAP
float detailMask = dot(SAMPLE_TEXTURE2D_SCALE_BIAS(_DetailMaskMap), _DetailMaskMapChannelMask);
float4 detailGradient = SAMPLE_TEXTURE2D_NORMAL_SCALE_BIAS(_DetailNormalMap, _DetailNormalScale, 0.0);
gradient += detailGradient * detailMask;
gradient.w *= 0.5; // Take mean of average normal length
float detailPerceptualSmoothness = dot(SAMPLE_TEXTURE2D_SCALE_BIAS(_DetailSmoothnessMap), _DetailSmoothnessMapChannelMask);
detailPerceptualSmoothness = lerp(_DetailSmoothnessMapRange.x, _DetailSmoothnessMapRange.y, detailPerceptualSmoothness);
// Use overlay blend mode for detail abledo: (base < 0.5 ? (2.0 * base * blend) : (1.0 - 2.0 * (1.0 - base) * (1.0 - blend)))
float smoothnessOverlay = (detailPerceptualSmoothness < 0.5) ?
surfaceData.perceptualSmoothnessA * PositivePow(2.0 * detailPerceptualSmoothness, _DetailSmoothnessScale) :
1.0 - (1.0 - surfaceData.perceptualSmoothnessA) * PositivePow(2.0 * (1.0 - detailPerceptualSmoothness), _DetailSmoothnessScale);
// Lerp with details mask
surfaceData.perceptualSmoothnessA = lerp(surfaceData.perceptualSmoothnessA, saturate(smoothnessOverlay), detailMask);
#ifdef _MATERIAL_FEATURE_DUAL_SPECULAR_LOBE
// Use overlay blend mode for detail abledo: (base < 0.5 ? (2.0 * base * blend) : (1.0 - 2.0 * (1.0 - base) * (1.0 - blend)))
smoothnessOverlay = (detailPerceptualSmoothness < 0.5) ?
surfaceData.perceptualSmoothnessB * PositivePow(2.0 * detailPerceptualSmoothness, _DetailSmoothnessScale) :
1.0 - (1.0 - surfaceData.perceptualSmoothnessB) * PositivePow(2.0 * (1.0 - detailPerceptualSmoothness), _DetailSmoothnessScale);
// Lerp with details mask
surfaceData.perceptualSmoothnessB = lerp(surfaceData.perceptualSmoothnessB, saturate(smoothnessOverlay), detailMask);
#endif
#endif
// -------------------------------------------------------------
// Surface Data Part 2 (outsite GetSurfaceData( ) in Lit shader):
// -------------------------------------------------------------

builtinData.opacity = alpha;
builtinData.bakeDiffuseLighting = SampleBakedGI(input.positionWS, surfaceData.normalWS, input.texCoord1, input.texCoord2);
builtinData.bakeDiffuseLighting = SampleBakedGI(input.positionRWS, surfaceData.normalWS, input.texCoord1, input.texCoord2);
// It is safe to call this function here as surfaceData have been filled
// We want to know if we must enable transmission on GI for SSS material, if the material have no SSS, this code will be remove by the compiler.

// however it will not optimize the lightprobe case due to the proxy volume relying on dynamic if (we rely must get right of this dynamic if), not a problem for SH9, but a problem for proxy volume.
// TODO: optimize more this code.
// Add GI transmission contribution by resampling the GI for inverted vertex normal
builtinData.bakeDiffuseLighting += SampleBakedGI(input.positionWS, -input.worldToTangent[2], input.texCoord1, input.texCoord2) * bsdfData.transmittance;
builtinData.bakeDiffuseLighting += SampleBakedGI(input.positionRWS, -input.worldToTangent[2], input.texCoord1, input.texCoord2) * bsdfData.transmittance;
}
builtinData.emissiveColor = _EmissiveColor * lerp(float3(1.0, 1.0, 1.0), surfaceData.baseColor.rgb, _AlbedoAffectEmissive);

builtinData.velocity = float2(0.0, 0.0);
#ifdef SHADOWS_SHADOWMASK
float4 shadowMask = SampleShadowMask(input.positionWS, input.texCoord1);
float4 shadowMask = SampleShadowMask(input.positionRWS, input.texCoord1);
builtinData.shadowMask0 = shadowMask.x;
builtinData.shadowMask1 = shadowMask.y;
builtinData.shadowMask2 = shadowMask.z;

56
com.unity.render-pipelines.high-definition/HDRP/Material/StackLit/StackLitProperties.hlsl


TEXTURE2D(_ThicknessMap);
SAMPLER(sampler_ThicknessMap);
// Details
TEXTURE2D(_DetailMaskMap);
SAMPLER(sampler_DetailMaskMap);
TEXTURE2D(_DetailSmoothnessMap);
SAMPLER(sampler_DetailSmoothnessMap);
TEXTURE2D(_DetailNormalMap);
SAMPLER(sampler_DetailNormalMap);
TEXTURE2D(_EmissiveColorMap);
SAMPLER(sampler_EmissiveColorMap);

float4 _MetallicMap_TexelSize;
float4 _MetallicMap_MipInfo;
float4 _MetallicMapChannelMask;
float4 _MetallicRange;
float4 _MetallicMapRange;
float _DielectricIor;

float4 _SmoothnessAMap_TexelSize;
float4 _SmoothnessAMap_MipInfo;
float4 _SmoothnessAMapChannelMask;
float4 _SmoothnessARange;
float4 _SmoothnessAMapRange;
float4 _DebugEnvLobeMask;
float4 _DebugLobeMask;

float4 _AmbientOcclusionMap_TexelSize;
float4 _AmbientOcclusionMap_MipInfo;
float4 _AmbientOcclusionMapChannelMask;
float4 _AmbientOcclusionRange;
float4 _AmbientOcclusionMapRange;
float _SmoothnessB;
float _SmoothnessBUseMap;

float4 _SmoothnessBMap_TexelSize;
float4 _SmoothnessBMap_MipInfo;
float4 _SmoothnessBMapChannelMask;
float4 _SmoothnessBRange;
float4 _SmoothnessBMapRange;
float _LobeMix;
float _Anisotropy;

float4 _AnisotropyMap_TexelSize;
float4 _AnisotropyMap_MipInfo;
float4 _AnisotropyMapChannelMask;
float4 _AnisotropyRange;
float4 _AnisotropyMapRange;
float _CoatSmoothness;
float _CoatSmoothnessUseMap;

float4 _CoatSmoothnessMap_TexelSize;
float4 _CoatSmoothnessMap_MipInfo;
float4 _CoatSmoothnessMapChannelMask;
float4 _CoatSmoothnessRange;
float4 _CoatSmoothnessMapRange;
float _CoatIor;
float _CoatThickness;
float3 _CoatExtinction;

float4 _CoatNormalMap_TexelSize;
float4 _CoatNormalMap_MipInfo;
float _IridescenceThickness;
float _IridescenceThicknessUseMap;
float _IridescenceThicknessMapUV;

float4 _IridescenceThicknessMap_MipInfo;
float4 _IridescenceThicknessMapChannelMask;
float4 _IridescenceThicknessRange;
float4 _IridescenceThicknessMapRange;
float _IridescenceIor;
float _IridescenceMask;

float4 _IridescenceMaskMap_TexelSize;
float4 _IridescenceMaskMap_MipInfo;
float4 _IridescenceMaskMapChannelMask;
float4 _IridescenceMaskRange;
float4 _IridescenceMaskMapRange;
int _DiffusionProfile;
float _SubsurfaceMask;

float4 _SubsurfaceMaskMap_TexelSize;
float4 _SubsurfaceMaskMap_MipInfo;
float4 _SubsurfaceMaskMapChannelMask;
float4 _SubsurfaceMaskRange;
float4 _SubsurfaceMaskMapRange;
float _Thickness;
float _ThicknessUseMap;

float4 _ThicknessMap_TexelSize;
float4 _ThicknessMap_MipInfo;
float4 _ThicknessMapChannelMask;
float4 _ThicknessRange;
float4 _ThicknessMapRange;
// Details
float _DetailMaskMapUV;
float _DetailMaskMapUVLocal;
float4 _DetailMaskMap_ST;
float4 _DetailMaskMap_TexelSize;
float4 _DetailMaskMap_MipInfo;
float4 _DetailMaskMapChannelMask;
float _DetailSmoothnessMapUV;
float _DetailSmoothnessMapUVLocal;
float4 _DetailSmoothnessMap_ST;
float4 _DetailSmoothnessMap_TexelSize;
float4 _DetailSmoothnessMap_MipInfo;
float4 _DetailSmoothnessMapChannelMask;
float4 _DetailSmoothnessMapRange;
float _DetailSmoothnessScale;
float _DetailNormalScale;
float _DetailNormalMapUV;
float _DetailNormalMapUVLocal;
float4 _DetailNormalMap_ST;
float4 _DetailNormalMap_TexelSize;
float4 _DetailNormalMap_MipInfo;
float3 _EmissiveColor;
float4 _EmissiveColorMap_ST;

2
com.unity.render-pipelines.high-definition/HDRP/RenderPipelineResources/CopyDepthBuffer.shader


#include "CoreRP/ShaderLibrary/Common.hlsl"
#include "../ShaderVariables.hlsl"
TEXTURE2D(_InputDepthTexture);
TEXTURE2D_FLOAT(_InputDepthTexture);
struct Attributes
{

4
com.unity.render-pipelines.high-definition/HDRP/ShaderPass/FragInputs.hlsl


// Contain value return by SV_POSITION (That is name positionCS in PackedVarying).
// xy: unormalized screen position (offset by 0.5), z: device depth, w: depth in view space
// Note: SV_POSITION is the result of the clip space position provide to the vertex shaders that is transform by the viewport
float4 positionSS; // In case depth offset is use, positionWS.w is equal to depth offset
float3 positionWS;
float4 positionSS; // In case depth offset is use, positionRWS.w is equal to depth offset
float3 positionRWS; // Relative camera space position
float2 texCoord0;
float2 texCoord1;
float2 texCoord2;

11
com.unity.render-pipelines.high-definition/HDRP/ShaderPass/ShaderPassDBuffer.hlsl


{
FragInputs input = UnpackVaryingsMeshToFragInputs(packedInput.vmesh);
DecalSurfaceData surfaceData;
// Transform from world space to decal space (DS) to clip the decal.
// For this we must use absolute position.
// There is no lose of precision here as it doesn't involve the camera matrix
float3 positionWS = GetAbsolutePositionWS(posInput.positionWS);
float3 positionDS = mul(UNITY_MATRIX_I_M, float4(positionWS, 1.0)).xyz;
// Transform from relative world space to decal space (DS) to clip the decal
float3 positionDS = TransformWorldToObject(posInput.positionWS);
float4x4 normalToWorld = UNITY_ACCESS_INSTANCED_PROP(matrix, _NormalToWorld);
GetSurfaceData(positionDS.xz, normalToWorld, surfaceData);
// have to do explicit test since compiler behavior is not defined for RW resources and discard instructions

4
com.unity.render-pipelines.high-definition/HDRP/ShaderPass/ShaderPassDepthOnly.hlsl


FragInputs input = UnpackVaryingsMeshToFragInputs(packedInput.vmesh);
// input.positionSS is SV_Position
PositionInputs posInput = GetPositionInput(input.positionSS.xy, _ScreenSize.zw, input.positionSS.z, input.positionSS.w, input.positionWS);
PositionInputs posInput = GetPositionInput(input.positionSS.xy, _ScreenSize.zw, input.positionSS.z, input.positionSS.w, input.positionRWS);
float3 V = GetWorldSpaceNormalizeViewDir(input.positionWS);
float3 V = GetWorldSpaceNormalizeViewDir(input.positionRWS);
#else
float3 V = 0; // Avoid the division by 0
#endif

4
com.unity.render-pipelines.high-definition/HDRP/ShaderPass/ShaderPassDistortion.hlsl


FragInputs input = UnpackVaryingsMeshToFragInputs(packedInput.vmesh);
// input.positionSS is SV_Position
PositionInputs posInput = GetPositionInput(input.positionSS.xy, _ScreenSize.zw, input.positionSS.z, input.positionSS.w, input.positionWS);
PositionInputs posInput = GetPositionInput(input.positionSS.xy, _ScreenSize.zw, input.positionSS.z, input.positionSS.w, input.positionRWS);
float3 V = GetWorldSpaceNormalizeViewDir(input.positionWS);
float3 V = GetWorldSpaceNormalizeViewDir(input.positionRWS);
#else
float3 V = 0; // Avoid the division by 0
#endif

4
com.unity.render-pipelines.high-definition/HDRP/ShaderPass/ShaderPassForward.hlsl


FragInputs input = UnpackVaryingsMeshToFragInputs(packedInput.vmesh);
// input.positionSS is SV_Position
PositionInputs posInput = GetPositionInput(input.positionSS.xy, _ScreenSize.zw, input.positionSS.z, input.positionSS.w, input.positionWS.xyz, uint2(input.positionSS.xy) / GetTileSize());
PositionInputs posInput = GetPositionInput(input.positionSS.xy, _ScreenSize.zw, input.positionSS.z, input.positionSS.w, input.positionRWS.xyz, uint2(input.positionSS.xy) / GetTileSize());
float3 V = GetWorldSpaceNormalizeViewDir(input.positionWS);
float3 V = GetWorldSpaceNormalizeViewDir(input.positionRWS);
#else
float3 V = 0; // Avoid the division by 0
#endif

4
com.unity.render-pipelines.high-definition/HDRP/ShaderPass/ShaderPassForwardUnlit.hlsl


FragInputs input = UnpackVaryingsMeshToFragInputs(packedInput.vmesh);
// input.positionSS is SV_Position
PositionInputs posInput = GetPositionInput(input.positionSS.xy, _ScreenSize.zw, input.positionSS.z, input.positionSS.w, input.positionWS);
PositionInputs posInput = GetPositionInput(input.positionSS.xy, _ScreenSize.zw, input.positionSS.z, input.positionSS.w, input.positionRWS);
float3 V = GetWorldSpaceNormalizeViewDir(input.positionWS);
float3 V = GetWorldSpaceNormalizeViewDir(input.positionRWS);
#else
float3 V = 0; // Avoid the division by 0
#endif

4
com.unity.render-pipelines.high-definition/HDRP/ShaderPass/ShaderPassGBuffer.hlsl


FragInputs input = UnpackVaryingsMeshToFragInputs(packedInput.vmesh);
// input.positionSS is SV_Position
PositionInputs posInput = GetPositionInput(input.positionSS.xy, _ScreenSize.zw, input.positionSS.z, input.positionSS.w, input.positionWS);
PositionInputs posInput = GetPositionInput(input.positionSS.xy, _ScreenSize.zw, input.positionSS.z, input.positionSS.w, input.positionRWS);
float3 V = GetWorldSpaceNormalizeViewDir(input.positionWS);
float3 V = GetWorldSpaceNormalizeViewDir(input.positionRWS);
#else
float3 V = 0; // Avoid the division by 0
#endif

7
com.unity.render-pipelines.high-definition/HDRP/ShaderPass/ShaderPassLightTransport.hlsl


output.vmesh.positionCS = float4(uv * 2.0 - 1.0, inputMesh.positionOS.z > 0 ? 1.0e-4 : 0.0, 1.0);
#ifdef VARYINGS_NEED_POSITION_WS
float3 positionWS = GetCameraRelativePositionWS(TransformObjectToWorld(inputMesh.positionOS));
output.vmesh.positionWS = positionWS;
output.vmesh.positionRWS = TransformObjectToWorld(inputMesh.positionOS);
#endif
#ifdef VARYINGS_NEED_TANGENT_TO_WORLD

FragInputs input = UnpackVaryingsMeshToFragInputs(packedInput.vmesh);
// input.positionSS is SV_Position
PositionInputs posInput = GetPositionInput(input.positionSS.xy, _ScreenSize.zw, input.positionSS.z, input.positionSS.w, input.positionWS);
PositionInputs posInput = GetPositionInput(input.positionSS.xy, _ScreenSize.zw, input.positionSS.z, input.positionSS.w, input.positionRWS);
float3 V = GetWorldSpaceNormalizeViewDir(input.positionWS);
float3 V = GetWorldSpaceNormalizeViewDir(input.positionRWS);
#else
float3 V = 0; // Avoid the division by 0
#endif

24
com.unity.render-pipelines.high-definition/HDRP/ShaderPass/ShaderPassVelocity.hlsl


#endif
}
// Transforms local position to camera relative world space
float3 TransformPreviousObjectToWorld(float3 positionOS)
{
float4x4 previousModelMatrix = ApplyCameraTranslationToMatrix(unity_MatrixPreviousM);
return mul(previousModelMatrix, float4(positionOS, 1.0)).xyz;
}
void VelocityPositionZBias(VaryingsToPS input)
{
#if defined(UNITY_REVERSED_Z)

// It is not possible to correctly generate the motion vector for tesselated geometry as tessellation parameters can change
// from one frame to another (adaptative, lod) + in Unity we only receive information for one non tesselated vertex.
// So motion vetor will be based on interpolate previous position at vertex level instead.
varyingsType.vpass.positionCS = mul(_NonJitteredViewProjMatrix, float4(varyingsType.vmesh.positionWS, 1.0));
varyingsType.vpass.positionCS = mul(_NonJitteredViewProjMatrix, float4(varyingsType.vmesh.positionRWS, 1.0));
// Note: unity_MotionVectorsParams.y is 0 is forceNoMotion is enabled
bool forceNoMotion = unity_MotionVectorsParams.y == 0.0;

if (hasDeformation)
previousMesh.positionOS = inputPass.previousPositionOS;
previousMesh = ApplyMeshModification(previousMesh);
float3 previousPositionWS = mul(unity_MatrixPreviousM, float4(previousMesh.positionOS, 1.0)).xyz;
float3 previousPositionRWS = TransformPreviousObjectToWorld(previousMesh.positionOS);
float3 previousPositionWS = mul(unity_MatrixPreviousM, hasDeformation ? float4(inputPass.previousPositionOS, 1.0) : float4(inputMesh.positionOS, 1.0)).xyz;
float3 previousPositionRWS = TransformPreviousObjectToWorld(hasDeformation ? inputPass.previousPositionOS : inputMesh.positionOS);
#endif
#ifdef ATTRIBUTES_NEED_NORMAL

#endif
#if defined(HAVE_VERTEX_MODIFICATION)
ApplyVertexModification(inputMesh, normalWS, previousPositionWS, _LastTime);
ApplyVertexModification(inputMesh, normalWS, previousPositionRWS, _LastTime);
//Need this since we are using the current position from VertMesh()
previousPositionWS = GetCameraRelativePositionWS(previousPositionWS);
varyingsType.vpass.previousPositionCS = mul(_PrevViewProjMatrix, float4(previousPositionWS, 1.0));
varyingsType.vpass.previousPositionCS = mul(_PrevViewProjMatrix, float4(previousPositionRWS, 1.0));
}
return PackVaryingsType(varyingsType);

FragInputs input = UnpackVaryingsMeshToFragInputs(packedInput.vmesh);
// input.positionSS is SV_Position
PositionInputs posInput = GetPositionInput(input.positionSS.xy, _ScreenSize.zw, input.positionSS.z, input.positionSS.w, input.positionWS);
PositionInputs posInput = GetPositionInput(input.positionSS.xy, _ScreenSize.zw, input.positionSS.z, input.positionSS.w, input.positionRWS);
float3 V = GetWorldSpaceNormalizeViewDir(input.positionWS);
float3 V = GetWorldSpaceNormalizeViewDir(input.positionRWS);
#else
float3 V = 0; // Avoid the division by 0
#endif

16
com.unity.render-pipelines.high-definition/HDRP/ShaderPass/TessellationShare.hlsl


VaryingsToDS varying1 = UnpackVaryingsToDS(input[1]);
VaryingsToDS varying2 = UnpackVaryingsToDS(input[2]);
float3 p0 = varying0.vmesh.positionWS;
float3 p1 = varying1.vmesh.positionWS;
float3 p2 = varying2.vmesh.positionWS;
float3 p0 = varying0.vmesh.positionRWS;
float3 p1 = varying1.vmesh.positionRWS;
float3 p2 = varying2.vmesh.positionRWS;
float3 n0 = varying0.vmesh.normalWS;
float3 n1 = varying1.vmesh.normalWS;

// We have Phong tessellation in all case where we don't have displacement only
#ifdef _TESSELLATION_PHONG
float3 p0 = varying0.vmesh.positionWS;
float3 p1 = varying1.vmesh.positionWS;
float3 p2 = varying2.vmesh.positionWS;
float3 p0 = varying0.vmesh.positionRWS;
float3 p1 = varying1.vmesh.positionRWS;
float3 p2 = varying2.vmesh.positionRWS;
varying.vmesh.positionWS = PhongTessellation( varying.vmesh.positionWS,
varying.vmesh.positionRWS = PhongTessellation( varying.vmesh.positionRWS,
ApplyTessellationModification(varying.vmesh, varying.vmesh.normalWS, varying.vmesh.positionWS);
ApplyTessellationModification(varying.vmesh, varying.vmesh.normalWS, varying.vmesh.positionRWS);
#endif
return VertTesselation(varying);

16
com.unity.render-pipelines.high-definition/HDRP/ShaderPass/VaryingMesh.hlsl


{
float4 positionCS;
#ifdef VARYINGS_NEED_POSITION_WS
float3 positionWS;
float3 positionRWS;
#endif
#ifdef VARYINGS_NEED_TANGENT_TO_WORLD
float3 normalWS;

output.positionCS = input.positionCS;
#ifdef VARYINGS_NEED_POSITION_WS
output.interpolators0 = input.positionWS;
output.interpolators0 = input.positionRWS;
#endif
#ifdef VARYINGS_NEED_TANGENT_TO_WORLD

output.positionSS = input.positionCS; // input.positionCS is SV_Position
#ifdef VARYINGS_NEED_POSITION_WS
output.positionWS.xyz = input.interpolators0.xyz;
output.positionRWS.xyz = input.interpolators0.xyz;
#endif
#ifdef VARYINGS_NEED_TANGENT_TO_WORLD

// Position and normal are always present (for tessellation) and in world space
struct VaryingsMeshToDS
{
float3 positionWS;
float3 positionRWS;
float3 normalWS;
#ifdef VARYINGS_DS_NEED_TANGENT
float4 tangentWS;

struct PackedVaryingsMeshToDS
{
float3 interpolators0 : INTERNALTESSPOS; // positionWS
float3 interpolators0 : INTERNALTESSPOS; // positionRWS
float3 interpolators1 : NORMAL; // NormalWS
#ifdef VARYINGS_DS_NEED_TANGENT

UNITY_TRANSFER_INSTANCE_ID(input, output);
output.interpolators0 = input.positionWS;
output.interpolators0 = input.positionRWS;
output.interpolators1 = input.normalWS;
#ifdef VARYINGS_DS_NEED_TANGENT
output.interpolators2 = input.tangentWS;

UNITY_TRANSFER_INSTANCE_ID(input, output);
output.positionWS = input.interpolators0;
output.positionRWS = input.interpolators0;
output.normalWS = input.interpolators1;
#ifdef VARYINGS_DS_NEED_TANGENT
output.tangentWS = input.interpolators2;

UNITY_TRANSFER_INSTANCE_ID(input0, output);
TESSELLATION_INTERPOLATE_BARY(positionWS, baryCoords);
TESSELLATION_INTERPOLATE_BARY(positionRWS, baryCoords);
TESSELLATION_INTERPOLATE_BARY(normalWS, baryCoords);
#ifdef VARYINGS_DS_NEED_TANGENT
// This will interpolate the sign but should be ok in practice as we may expect a triangle to have same sign (? TO CHECK)

20
com.unity.render-pipelines.high-definition/HDRP/ShaderPass/VertMesh.hlsl


UNITY_SETUP_INSTANCE_ID(input);
UNITY_TRANSFER_INSTANCE_ID(input, output);
float3 positionWS = TransformObjectToWorld(input.positionOS);
// This return the camera relative position (if enable)
float3 positionRWS = TransformObjectToWorld(input.positionOS);
#ifdef ATTRIBUTES_NEED_NORMAL
float3 normalWS = TransformObjectToWorldNormal(input.normalOS);
#else

float4 tangentWS = float4(TransformObjectToWorldDir(input.tangentOS.xyz), input.tangentOS.w);
#endif
// TODO: deal with camera center rendering and instancing (This is the reason why we always perform two steps transform to clip space + instancing matrix)
// Do vertex modification in camera relative space (if enable)
ApplyVertexModification(input, normalWS, positionWS, _Time);
ApplyVertexModification(input, normalWS, positionRWS, _Time);
positionWS = GetCameraRelativePositionWS(positionWS);
output.positionWS = positionWS;
output.positionRWS = positionRWS;
output.normalWS = normalWS;
#if defined(VARYINGS_NEED_TANGENT_TO_WORLD) || defined(VARYINGS_DS_NEED_TANGENT)
output.tangentWS = tangentWS;

output.positionWS = positionWS;
output.positionRWS = positionRWS;
output.positionCS = TransformWorldToHClip(positionWS);
output.positionCS = TransformWorldToHClip(positionRWS);
#ifdef VARYINGS_NEED_TANGENT_TO_WORLD
output.normalWS = normalWS;
output.tangentWS = tangentWS;

UNITY_SETUP_INSTANCE_ID(input);
UNITY_TRANSFER_INSTANCE_ID(input, output);
output.positionCS = TransformWorldToHClip(input.positionWS);
output.positionCS = TransformWorldToHClip(input.positionRWS);
output.positionWS = input.positionWS;
output.positionRWS = input.positionRWS;
#endif
#ifdef VARYINGS_NEED_TANGENT_TO_WORLD

26
com.unity.render-pipelines.high-definition/HDRP/ShaderVariables.hlsl


return M;
}
// Helper to handle camera relative space
float4x4 ApplyCameraTranslationToMatrix(float4x4 modelMatrix)
{
// To handle camera relative rendering we substract the camera position in the model matrix
// User must not use UNITY_MATRIX_M directly, unless they understand what they do
#if (SHADEROPTIONS_CAMERA_RELATIVE_RENDERING != 0)
modelMatrix._m03_m13_m23 -= _WorldSpaceCameraPos;
#endif
return modelMatrix;
}
float4x4 ApplyCameraTranslationToInverseMatrix(float4x4 inverseModelMatrix)
{
#if (SHADEROPTIONS_CAMERA_RELATIVE_RENDERING != 0)
// To handle camera relative rendering we need to apply translation before converting to object space
float4x4 translationMatrix = { { 1.0, 0.0, 0.0, _WorldSpaceCameraPos.x },{ 0.0, 1.0, 0.0, _WorldSpaceCameraPos.y },{ 0.0, 0.0, 1.0, _WorldSpaceCameraPos.z },{ 0.0, 0.0, 0.0, 1.0 } };
return mul(inverseModelMatrix, translationMatrix);
#else
return inverseModelMatrix;
#endif
}
#ifdef USE_LEGACY_UNITY_MATRIX_VARIABLES
#include "ShaderVariablesMatrixDefsLegacyUnity.hlsl"
#else

// This define allow to tell to unity instancing that we will use our camera relative functions (ApplyCameraTranslationToMatrix and ApplyCameraTranslationToInverseMatrix) for the model view matrix
#define MODIFY_MATRIX_FOR_CAMERA_RELATIVE_RENDERING
#include "CoreRP/ShaderLibrary/UnityInstancing.hlsl"
#include "ShaderVariablesFunctions.hlsl"

64
com.unity.render-pipelines.high-definition/HDRP/ShaderVariablesFunctions.hlsl


#ifndef UNITY_SHADER_VARIABLES_FUNCTIONS_INCLUDED
#define UNITY_SHADER_VARIABLES_FUNCTIONS_INCLUDED
// This function always return the absolute position in WS
float3 GetAbsolutePositionWS(float3 positionRWS)
{
#if (SHADEROPTIONS_CAMERA_RELATIVE_RENDERING != 0)
positionRWS += _WorldSpaceCameraPos;
#endif
return positionRWS;
}
// This function return the camera relative position in WS
float3 GetCameraRelativePositionWS(float3 positionWS)
{
#if (SHADEROPTIONS_CAMERA_RELATIVE_RENDERING != 0)
positionWS -= _WorldSpaceCameraPos;
#endif
return positionWS;
}
// Return absolute world position of current object
float3 GetObjectAbsolutePositionWS()
{
float4x4 modelMatrix = UNITY_MATRIX_M;
return GetAbsolutePositionWS(modelMatrix._m03_m13_m23); // Translation object to world
}
// Return the PreTranslated ObjectToWorld Matrix (i.e matrix with _WorldSpaceCameraPos apply to it if we use camera relative rendering)
float4x4 GetObjectToWorldMatrix()
{
return UNITY_MATRIX_M;

return unity_WorldTransformParams.w;
}
float3 TransformWorldToView(float3 positionWS)
float3 TransformWorldToView(float3 positionRWS)
return mul(GetWorldToViewMatrix(), float4(positionWS, 1.0)).xyz;
return mul(GetWorldToViewMatrix(), float4(positionRWS, 1.0)).xyz;
}
float3 TransformObjectToWorld(float3 positionOS)

float3 TransformWorldToObject(float3 positionWS)
float3 TransformWorldToObject(float3 positionRWS)
return mul(GetWorldToObjectMatrix(), float4(positionWS, 1.0)).xyz;
return mul(GetWorldToObjectMatrix(), float4(positionRWS, 1.0)).xyz;
}
float3 TransformObjectToWorldDir(float3 dirOS)

}
// Tranforms position from world space to homogenous space
float4 TransformWorldToHClip(float3 positionWS)
float4 TransformWorldToHClip(float3 positionRWS)
return mul(GetWorldToHClipMatrix(), float4(positionWS, 1.0));
return mul(GetWorldToHClipMatrix(), float4(positionRWS, 1.0));
}
// Tranforms vector from world space to homogenous space

return mul((float3x3)GetViewToHClipMatrix(), directionVS);
}
// This function always return the absolute position in WS either the CameraRelative mode is enabled or not
float3 GetAbsolutePositionWS(float3 positionWS)
{
#if (SHADEROPTIONS_CAMERA_RELATIVE_RENDERING != 0)
positionWS += _WorldSpaceCameraPos;
#endif
return positionWS;
}
// This function always return the camera relative position in WS either the CameraRelative mode is enabled or not
float3 GetCameraRelativePositionWS(float3 positionWS)
{
#if (SHADEROPTIONS_CAMERA_RELATIVE_RENDERING != 0)
positionWS -= _WorldSpaceCameraPos;
#endif
return positionWS;
}
float3 GetPrimaryCameraPosition()
{
#if (SHADEROPTIONS_CAMERA_RELATIVE_RENDERING != 0)

}
// Computes the world space view direction (pointing towards the viewer).
float3 GetWorldSpaceViewDir(float3 positionWS)
float3 GetWorldSpaceViewDir(float3 positionRWS)
return GetCurrentViewPosition() - positionWS;
return GetCurrentViewPosition() - positionRWS;
}
else
{

}
float3 GetWorldSpaceNormalizeViewDir(float3 positionWS)
float3 GetWorldSpaceNormalizeViewDir(float3 positionRWS)
return normalize(GetWorldSpaceViewDir(positionWS));
return normalize(GetWorldSpaceViewDir(positionRWS));
}
float3x3 CreateWorldToTangent(float3 normal, float3 tangent, float flipSign)

7
com.unity.render-pipelines.high-definition/HDRP/ShaderVariablesMatrixDefsHDCamera.hlsl


#ifndef UNITY_SHADER_VARIABLES_MATRIX_DEFS_HDCAMERA_INCLUDED
#define UNITY_SHADER_VARIABLES_MATRIX_DEFS_HDCAMERA_INCLUDED
#define UNITY_MATRIX_M ApplyCameraTranslationToMatrix(unity_ObjectToWorld)
#define UNITY_MATRIX_I_M ApplyCameraTranslationToInverseMatrix(unity_WorldToObject)
#define UNITY_MATRIX_M unity_ObjectToWorld
#define UNITY_MATRIX_I_M unity_WorldToObject
#define UNITY_MATRIX_V _ViewMatrixStereo[unity_StereoEyeIndex]
#define UNITY_MATRIX_I_V _InvViewMatrixStereo[unity_StereoEyeIndex]
#define UNITY_MATRIX_P OptimizeProjectionMatrix(unity_StereoMatrixP[unity_StereoEyeIndex])

#else
#define UNITY_MATRIX_M unity_ObjectToWorld
#define UNITY_MATRIX_I_M unity_WorldToObject
#define UNITY_MATRIX_V _ViewMatrix
#define UNITY_MATRIX_I_V _InvViewMatrix
#define UNITY_MATRIX_P OptimizeProjectionMatrix(_ProjMatrix)

4
com.unity.render-pipelines.high-definition/HDRP/ShaderVariablesMatrixDefsLegacyUnity.hlsl


#ifndef UNITY_SHADER_VARIABLES_MATRIX_DEFS_LEGACY_UNITY_INCLUDED
#define UNITY_SHADER_VARIABLES_MATRIX_DEFS_LEGACY_UNITY_INCLUDED
#define UNITY_MATRIX_M unity_ObjectToWorld
#define UNITY_MATRIX_I_M unity_WorldToObject
#define UNITY_MATRIX_M ApplyCameraTranslationToMatrix(unity_ObjectToWorld)
#define UNITY_MATRIX_I_M ApplyCameraTranslationToInverseMatrix(unity_WorldToObject)
#define UNITY_MATRIX_V unity_MatrixV
#define UNITY_MATRIX_I_V unity_MatrixInvV
#define UNITY_MATRIX_P OptimizeProjectionMatrix(glstate_matrix_projection)

7
com.unity.render-pipelines.lightweight/LWRP/Editor/ShaderGraph/LightWeightPBRSubShader.cs


using System.Linq;
using UnityEditor.Graphing;
using UnityEditor.ShaderGraph;
using UnityEngine.Experimental.Rendering;
using UnityEngine.Experimental.Rendering.LightweightPipeline;
namespace UnityEditor.Experimental.Rendering.LightweightPipeline
{

}
return subShader.ToString();
}
public bool IsPipelineCompatible(RenderPipelineAsset renderPipelineAsset)
{
return renderPipelineAsset is LightweightPipelineAsset;
}
static string GetTemplatePath(string templateName)

6
com.unity.render-pipelines.lightweight/LWRP/Editor/ShaderGraph/LightWeightUnlitSubShader.cs


using System.IO;
using System.Linq;
using UnityEditor;
using UnityEditor.Experimental.Rendering.LightweightPipeline;
using UnityEditor.Graphing;
using UnityEditor.ShaderGraph;

}
return subShader.ToString();
}
public bool IsPipelineCompatible(RenderPipelineAsset renderPipelineAsset)
{
return renderPipelineAsset is LightweightPipelineAsset;
}
static string GetTemplatePath(string templateName)

3
com.unity.shadergraph/CHANGELOG.md


- Deserialization of subgraphs now works correctly.
- Sub graphs are now suffixed with (sub), so you can tell them apart from other nodes.
- The preview of a node does not obstruct the selection outliner anymore.
- If the current render pipeline is not compatible, master nodes now display an error badge.
- The preview shader now only considers the current render pipeline. Because of this there is less code to compile, and therefore the preview shader will compile faster.
- When you rename a shader graph or sub shader graph locally on your disk, the title of the Shader Graph window, black board, and preview also updates.

2
com.unity.shadergraph/Editor/Data/MasterNodes/ISubShader.cs


using System;
using System.Collections.Generic;
using UnityEngine.Experimental.Rendering;
namespace UnityEditor.ShaderGraph
{

bool IsPipelineCompatible(RenderPipelineAsset renderPipelineAsset);
}
}

2
com.unity.shadergraph/Editor/Data/Nodes/IMasterNode.cs


public interface IMasterNode : INode
{
string GetShader(GenerationMode mode, string name, out List<PropertyCollector.TextureInfo> configuredTextures, List<string> sourceAssetDependencyPaths = null);
bool IsPipelineCompatible(IRenderPipeline renderPipeline);
bool IsPipelineCompatible(RenderPipelineAsset renderPipelineAsset);
}
}

15
com.unity.shadergraph/Editor/Data/Nodes/MasterNode.cs


using UnityEngine;
using UnityEngine.Experimental.Rendering;
using UnityEngine.Experimental.UIElements;
using UnityEngine.Rendering;
namespace UnityEditor.ShaderGraph
{

}
foreach (var subShader in m_SubShaders)
finalShader.AppendLines(subShader.GetSubshader(this, mode, sourceAssetDependencyPaths));
{
if (mode != GenerationMode.Preview || subShader.IsPipelineCompatible(GraphicsSettings.renderPipelineAsset))
finalShader.AppendLines(subShader.GetSubshader(this, mode, sourceAssetDependencyPaths));
}
finalShader.AppendLine(@"FallBack ""Hidden/InternalErrorShader""");
}

public bool IsPipelineCompatible(IRenderPipeline renderPipeline)
public bool IsPipelineCompatible(RenderPipelineAsset renderPipelineAsset)
return true;
foreach (var subShader in m_SubShaders)
{
if (subShader.IsPipelineCompatible(GraphicsSettings.renderPipelineAsset))
return true;
}
return false;
}
public override void OnBeforeSerialize()

12
com.unity.shadergraph/Editor/Drawing/Blackboard/BlackboardProvider.cs


// set { m_ResizeBorderFrame.OnResizeFinished = value; }
//}
public BlackboardProvider(string assetName, AbstractMaterialGraph graph)
public string assetName
{
get { return blackboard.title; }
set
{
blackboard.title = value;
}
}
public BlackboardProvider(AbstractMaterialGraph graph)
{
m_Graph = graph;
m_ExposedIcon = Resources.Load<Texture2D>("GraphView/Nodes/BlackboardFieldExposed");

{
scrollable = true,
title = assetName.Split('/').Last(),
subTitle = FormatPath(graph.path),
editTextRequested = EditTextRequested,
addItemRequested = AddItemRequested,

13
com.unity.shadergraph/Editor/Drawing/Inspector/MasterPreviewView.cs


}
VisualElement m_Preview;
Label m_Title;
public VisualElement preview
{

static Type s_ContextualMenuManipulator = AppDomain.CurrentDomain.GetAssemblies().SelectMany(x => x.GetTypesOrNothing()).FirstOrDefault(t => t.FullName == "UnityEngine.Experimental.UIElements.ContextualMenuManipulator");
static Type s_ObjectSelector = AppDomain.CurrentDomain.GetAssemblies().SelectMany(x => x.GetTypesOrNothing()).FirstOrDefault(t => t.FullName == "UnityEditor.ObjectSelector");
public MasterPreviewView(string assetName, PreviewManager previewManager, AbstractMaterialGraph graph)
public string assetName
{
get { return m_Title.text; }
set { m_Title.text = value; }
}
public MasterPreviewView(PreviewManager previewManager, AbstractMaterialGraph graph)
{
this.clippingOptions = ClippingOptions.ClipAndCacheContents;
m_PreviewManager = previewManager;

var topContainer = new VisualElement() { name = "top" };
{
var title = new Label(assetName.Split('/').Last()) { name = "title" };
m_Title = new Label() { name = "title" };
// Add preview collapse button on top of preview
m_CollapsePreviewContainer = new VisualElement { name = "collapse-container" };

UpdatePreviewVisibility();
}));
topContainer.Add(title);
topContainer.Add(m_Title);
topContainer.Add(m_CollapsePreviewContainer);
}
Add(topContainer);

36
com.unity.shadergraph/Editor/Drawing/MaterialGraphEditWindow.cs


using Object = UnityEngine.Object;
using Edge = UnityEditor.Experimental.UIElements.GraphView.Edge;
using UnityEditor.Experimental.UIElements.GraphView;
using UnityEngine.Experimental.Rendering;
using UnityEngine.Rendering;
namespace UnityEditor.ShaderGraph.Drawing
{

public bool forceRedrawPreviews = false;
ColorSpace m_ColorSpace;
RenderPipelineAsset m_RenderPipelineAsset;
GraphEditorView m_GraphEditorView;

private set { m_Selected = value; }
}
public string assetName
{
get { return titleContent.text; }
set
{
titleContent.text = value;
graphEditorView.assetName = value;
}
}
void Update()
{
if (m_HasError)

m_ColorSpace = PlayerSettings.colorSpace;
}
if (GraphicsSettings.renderPipelineAsset != m_RenderPipelineAsset)
{
graphEditorView = null;
m_RenderPipelineAsset = GraphicsSettings.renderPipelineAsset;
}
try
{
if (graphObject == null && selectedGuid != null)

var materialGraph = graphObject.graph as AbstractMaterialGraph;
if (materialGraph == null)
return;
graphEditorView = new GraphEditorView(this, materialGraph, asset.name) { persistenceKey = selectedGuid };
graphEditorView = new GraphEditorView(this, materialGraph)
{
persistenceKey = selectedGuid,
assetName = asset.name.Split('/').Last()
};
m_RenderPipelineAsset = GraphicsSettings.renderPipelineAsset;
}
if (forceRedrawPreviews)

try
{
m_ColorSpace = PlayerSettings.colorSpace;
m_RenderPipelineAsset = GraphicsSettings.renderPipelineAsset;
var asset = AssetDatabase.LoadAssetAtPath<Object>(AssetDatabase.GUIDToAssetPath(assetGuid));
if (asset == null)

graphObject.graph.OnEnable();
graphObject.graph.ValidateGraph();
graphEditorView = new GraphEditorView(this, m_GraphObject.graph as AbstractMaterialGraph, asset.name) { persistenceKey = selectedGuid };
graphEditorView = new GraphEditorView(this, m_GraphObject.graph as AbstractMaterialGraph)
{
persistenceKey = selectedGuid,
assetName = asset.name.Split('/').Last()
};
titleContent = new GUIContent(asset.name);
titleContent = new GUIContent(asset.name.Split('/').Last());
Repaint();
}

17
com.unity.shadergraph/Editor/Drawing/Views/GraphEditorView.cs


set { m_PreviewManager = value; }
}
public GraphEditorView(EditorWindow editorWindow, AbstractMaterialGraph graph, string assetName)
public string assetName
{
get { return m_BlackboardProvider.assetName; }
set
{
m_BlackboardProvider.assetName = value;
m_MasterPreviewView.assetName = value;
}
}
public GraphEditorView(EditorWindow editorWindow, AbstractMaterialGraph graph)
{
m_Graph = graph;
AddStyleSheetPath("Styles/GraphEditorView");

var content = new VisualElement { name = "content" };
{
graph.name = assetName;
m_GraphView = new MaterialGraphView(graph) { name = "GraphView", persistenceKey = "MaterialGraphView" };
m_GraphView.SetupZoom(0.05f, ContentZoomer.DefaultMaxScale);
m_GraphView.AddManipulator(new ContentDragger());

m_GraphView.RegisterCallback<KeyDownEvent>(OnSpaceDown);
content.Add(m_GraphView);
m_BlackboardProvider = new BlackboardProvider(assetName, graph);
m_BlackboardProvider = new BlackboardProvider(graph);
m_GraphView.Add(m_BlackboardProvider.blackboard);
Rect blackboardLayout = m_BlackboardProvider.blackboard.layout;
blackboardLayout.x = 10f;

m_MasterPreviewView = new MasterPreviewView(assetName, previewManager, graph) { name = "masterPreview" };
m_MasterPreviewView = new MasterPreviewView(previewManager, graph) { name = "masterPreview" };
WindowDraggable masterPreviewViewDraggable = new WindowDraggable(null, this);
m_MasterPreviewView.AddManipulator(masterPreviewViewDraggable);

5
com.unity.shadergraph/Editor/Drawing/Views/MaterialNodeView.cs


using UnityEngine.Experimental.Rendering;
using UnityEngine.Experimental.UIElements.StyleEnums;
using UnityEngine.Experimental.UIElements.StyleSheets;
using UnityEngine.Rendering;
using Node = UnityEditor.Experimental.UIElements.GraphView.Node;
namespace UnityEditor.ShaderGraph.Drawing

var masterNode = node as IMasterNode;
if (masterNode != null)
{
if (!masterNode.IsPipelineCompatible(RenderPipelineManager.currentPipeline))
if (!masterNode.IsPipelineCompatible(GraphicsSettings.renderPipelineAsset))
IconBadge wrongPipeline = IconBadge.CreateError("The current render pipeline is not compatible with this node preview.");
IconBadge wrongPipeline = IconBadge.CreateError("The current render pipeline is not compatible with this master node.");
Add(wrongPipeline);
VisualElement title = this.Q("title");
wrongPipeline.AttachTo(title, SpriteAlignment.LeftCenter);

135
com.unity.shadergraph/Editor/Importers/ShaderGraphImporter.cs


using UnityEditor.Experimental.AssetImporters;
using UnityEditor.ShaderGraph.Drawing;
[ScriptedImporter(15, ShaderGraphExtension)]
public class ShaderGraphImporter : ScriptedImporter
namespace UnityEditor.ShaderGraph
public const string ShaderGraphExtension = "shadergraph";
[ScriptedImporter(15, ShaderGraphExtension)]
public class ShaderGraphImporter : ScriptedImporter
{
public const string ShaderGraphExtension = "shadergraph";
const string k_ErrorShader = @"
const string k_ErrorShader = @"
Shader ""Hidden/GraphErrorShader2""
{
SubShader

Fallback Off
}";
public override void OnImportAsset(AssetImportContext ctx)
{
var oldShader = AssetDatabase.LoadAssetAtPath<Shader>(ctx.assetPath);
if (oldShader != null)
ShaderUtil.ClearShaderErrors(oldShader);
public override void OnImportAsset(AssetImportContext ctx)
{
var oldShader = AssetDatabase.LoadAssetAtPath<Shader>(ctx.assetPath);
if (oldShader != null)
ShaderUtil.ClearShaderErrors(oldShader);
List<PropertyCollector.TextureInfo> configuredTextures;
string path = ctx.assetPath;
var sourceAssetDependencyPaths = new List<string>();
var text = GetShaderText(path, out configuredTextures, sourceAssetDependencyPaths);
var shader = ShaderUtil.CreateShaderAsset(text);
List<PropertyCollector.TextureInfo> configuredTextures;
string path = ctx.assetPath;
var sourceAssetDependencyPaths = new List<string>();
var text = GetShaderText(path, out configuredTextures, sourceAssetDependencyPaths);
var shader = ShaderUtil.CreateShaderAsset(text);
EditorMaterialUtility.SetShaderDefaults(
shader,
configuredTextures.Where(x => x.modifiable).Select(x => x.name).ToArray(),
configuredTextures.Where(x => x.modifiable).Select(x => EditorUtility.InstanceIDToObject(x.textureId) as Texture).ToArray());
EditorMaterialUtility.SetShaderNonModifiableDefaults(
shader,
configuredTextures.Where(x => !x.modifiable).Select(x => x.name).ToArray(),
configuredTextures.Where(x => !x.modifiable).Select(x => EditorUtility.InstanceIDToObject(x.textureId) as Texture).ToArray());
EditorMaterialUtility.SetShaderDefaults(
shader,
configuredTextures.Where(x => x.modifiable).Select(x => x.name).ToArray(),
configuredTextures.Where(x => x.modifiable).Select(x => EditorUtility.InstanceIDToObject(x.textureId) as Texture).ToArray());
EditorMaterialUtility.SetShaderNonModifiableDefaults(
shader,
configuredTextures.Where(x => !x.modifiable).Select(x => x.name).ToArray(),
configuredTextures.Where(x => !x.modifiable).Select(x => EditorUtility.InstanceIDToObject(x.textureId) as Texture).ToArray());
ctx.AddObjectToAsset("MainAsset", shader);
ctx.SetMainObject(shader);
ctx.AddObjectToAsset("MainAsset", shader);
ctx.SetMainObject(shader);
foreach (var sourceAssetDependencyPath in sourceAssetDependencyPaths.Distinct())
ctx.DependsOnSourceAsset(sourceAssetDependencyPath);
}
foreach (var sourceAssetDependencyPath in sourceAssetDependencyPaths.Distinct())
ctx.DependsOnSourceAsset(sourceAssetDependencyPath);
}
internal static string GetShaderText(string path, out List<PropertyCollector.TextureInfo> configuredTextures, List<string> sourceAssetDependencyPaths)
{
string shaderString = null;
var shaderName = Path.GetFileNameWithoutExtension(path);
try
internal static string GetShaderText(string path, out List<PropertyCollector.TextureInfo> configuredTextures, List<string> sourceAssetDependencyPaths)
var textGraph = File.ReadAllText(path, Encoding.UTF8);
var graph = JsonUtility.FromJson<MaterialGraph>(textGraph);
graph.LoadedFromDisk();
string shaderString = null;
var shaderName = Path.GetFileNameWithoutExtension(path);
try
{
var textGraph = File.ReadAllText(path, Encoding.UTF8);
var graph = JsonUtility.FromJson<MaterialGraph>(textGraph);
graph.LoadedFromDisk();
if (!string.IsNullOrEmpty(graph.path))
shaderName = graph.path + "/" + shaderName;
shaderString = graph.GetShader(shaderName, GenerationMode.ForReals, out configuredTextures, sourceAssetDependencyPaths);
if (!string.IsNullOrEmpty(graph.path))
shaderName = graph.path + "/" + shaderName;
shaderString = graph.GetShader(shaderName, GenerationMode.ForReals, out configuredTextures, sourceAssetDependencyPaths);
if (sourceAssetDependencyPaths != null)
if (sourceAssetDependencyPaths != null)
{
foreach (var node in graph.GetNodes<AbstractMaterialNode>())
node.GetSourceAssetDependencies(sourceAssetDependencyPaths);
}
}
catch (Exception)
foreach (var node in graph.GetNodes<AbstractMaterialNode>())
node.GetSourceAssetDependencies(sourceAssetDependencyPaths);
configuredTextures = new List<PropertyCollector.TextureInfo>();
// ignored
}
catch (Exception)
{
configuredTextures = new List<PropertyCollector.TextureInfo>();
// ignored
}
return shaderString ?? k_ErrorShader.Replace("Hidden/GraphErrorShader2", shaderName);
}
internal static string GetShaderText(string path, out List<PropertyCollector.TextureInfo> configuredTextures)
{
return GetShaderText(path, out configuredTextures, null);
}
}
class ShaderGraphAssetPostProcessor : AssetPostprocessor
{
static void RegisterShaders(string[] paths)
{
foreach (var path in paths)
{
if (!path.EndsWith(ShaderGraphImporter.ShaderGraphExtension, StringComparison.InvariantCultureIgnoreCase))
continue;
var mainObj = AssetDatabase.LoadMainAssetAtPath(path);
if (mainObj is Shader)
ShaderUtil.RegisterShader((Shader)mainObj);
var objs = AssetDatabase.LoadAllAssetRepresentationsAtPath(path);
foreach (var obj in objs)
{
if (obj is Shader)
ShaderUtil.RegisterShader((Shader)obj);
}
return shaderString ?? k_ErrorShader.Replace("Hidden/GraphErrorShader2", shaderName);
}
static void OnPostprocessAllAssets(string[] importedAssets, string[] deletedAssets, string[] movedAssets, string[] movedFromAssetPaths)
{
MaterialGraphEditWindow[] windows = Resources.FindObjectsOfTypeAll<MaterialGraphEditWindow>();
foreach (var matGraphEditWindow in windows)
internal static string GetShaderText(string path, out List<PropertyCollector.TextureInfo> configuredTextures)
matGraphEditWindow.forceRedrawPreviews = true;
return GetShaderText(path, out configuredTextures, null);
RegisterShaders(importedAssets);
}
}

69
com.unity.shadergraph/Editor/Importers/ShaderGraphImporterEditor.cs


using UnityEditor.ShaderGraph.Drawing;
using UnityEngine;
[CustomEditor(typeof(ShaderGraphImporter))]
public class ShaderGraphImporterEditor : ScriptedImporterEditor
namespace UnityEditor.ShaderGraph
public override void OnInspectorGUI()
[CustomEditor(typeof(ShaderGraphImporter))]
public class ShaderGraphImporterEditor : ScriptedImporterEditor
if (GUILayout.Button("Open Shader Editor"))
public override void OnInspectorGUI()
AssetImporter importer = target as AssetImporter;
Debug.Assert(importer != null, "importer != null");
ShowGraphEditWindow(importer.assetPath);
if (GUILayout.Button("Open Shader Editor"))
{
AssetImporter importer = target as AssetImporter;
Debug.Assert(importer != null, "importer != null");
ShowGraphEditWindow(importer.assetPath);
}
}
internal static bool ShowGraphEditWindow(string path)
{
var guid = AssetDatabase.AssetPathToGUID(path);
var extension = Path.GetExtension(path);
if (extension != ".ShaderGraph" && extension != ".LayeredShaderGraph" && extension != ".ShaderSubGraph" && extension != ".ShaderRemapGraph")
return false;
internal static bool ShowGraphEditWindow(string path)
{
var guid = AssetDatabase.AssetPathToGUID(path);
var extension = Path.GetExtension(path);
if (extension != ".ShaderGraph" && extension != ".LayeredShaderGraph" && extension != ".ShaderSubGraph" && extension != ".ShaderRemapGraph")
return false;
var foundWindow = false;
foreach (var w in Resources.FindObjectsOfTypeAll<MaterialGraphEditWindow>())
{
if (w.selectedGuid == guid)
{
foundWindow = true;
w.Focus();
}
}
var foundWindow = false;
foreach (var w in Resources.FindObjectsOfTypeAll<MaterialGraphEditWindow>())
{
if (w.selectedGuid == guid)
if (!foundWindow)
foundWindow = true;
w.Focus();
var window = CreateInstance<MaterialGraphEditWindow>();
window.Show();
window.Initialize(guid);
return true;
if (!foundWindow)
[OnOpenAsset(0)]
public static bool OnOpenAsset(int instanceID, int line)
var window = CreateInstance<MaterialGraphEditWindow>();
window.Show();
window.Initialize(guid);
var path = AssetDatabase.GetAssetPath(instanceID);
return ShowGraphEditWindow(path);
return true;
}
[OnOpenAsset(0)]
public static bool OnOpenAsset(int instanceID, int line)
{
var path = AssetDatabase.GetAssetPath(instanceID);
return ShowGraphEditWindow(path);
}
}

17
com.unity.shadergraph/Editor/Importers/ShaderSubGraphImporterEditor.cs


using UnityEngine;
using Debug = System.Diagnostics.Debug;
[CustomEditor(typeof(ShaderSubGraphImporter))]
public class ShaderSubGraphImporterEditor : ScriptedImporterEditor
namespace UnityEditor.ShaderGraph
public override void OnInspectorGUI()
[CustomEditor(typeof(ShaderSubGraphImporter))]
public class ShaderSubGraphImporterEditor : ScriptedImporterEditor
if (GUILayout.Button("Open Shader Editor"))
public override void OnInspectorGUI()
AssetImporter importer = target as AssetImporter;
Debug.Assert(importer != null, "importer != null");
ShaderGraphImporterEditor.ShowGraphEditWindow(importer.assetPath);
if (GUILayout.Button("Open Shader Editor"))
{
AssetImporter importer = target as AssetImporter;
Debug.Assert(importer != null, "importer != null");
ShaderGraphImporterEditor.ShowGraphEditWindow(importer.assetPath);
}
}
}
}

4
TestProjects/HDRP_Tests/TestRunnerOptions.json


{
"disableBatchMode": true,
"disabledOnPlatforms" : ["Darwin"]
}

部分文件因为文件数量过多而无法显示

正在加载...
取消
保存