|
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
|
|
|
|
|
|
// Performs the mapping of the vector 'v' centered within the axis-aligned cube |
|
|
|
// of dimensions [-1, 1]^3 to a vector centered within the sphere of radius 1. |
|
|
|
// of dimensions [-1, 1]^3 to a vector centered within the unit sphere. |
|
|
|
// The function expects 'v' to be within the cube (possibly unexpected results otherwise). |
|
|
|
// Ref: http://mathproofs.blogspot.com/2005/07/mapping-cube-to-sphere.html |
|
|
|
float3 MapCubeToSphere(float3 v) |
|
|
|
|
|
|
return attenuation; |
|
|
|
} |
|
|
|
|
|
|
|
// Applies SmoothDistanceAttenuation() after transforming the attenuation ellipsoid into a sphere |
|
|
|
// of the given radius. The process is performed along the major axis of the ellipsoid, and |
|
|
|
// the magnitude of the transformation is controlled by the aspect ratio (the inverse is given). |
|
|
|
// Applies SmoothDistanceAttenuation() after transforming the attenuation ellipsoid into a sphere. |
|
|
|
// If r = rsqrt(invSqRadius), then ellipsoid is defined s.t. r1 = r / invAspectRatio, r2 = r3 = r. |
|
|
|
// The transformation is performed along the major axis of the ellipsoid (corresponding to 'r1'). |
|
|
|
float GetEllipsoidalDistanceAttenuation(float3 unL, float invSqrAttenuationRadius, |
|
|
|
float GetEllipsoidalDistanceAttenuation(float3 unL, float invSqRadius, |
|
|
|
float3 axis, float invAspectRatio) |
|
|
|
{ |
|
|
|
// Project the unnormalized light vector onto the axis. |
|
|
|
|
|
|
unL -= diff * axis; |
|
|
|
|
|
|
|
float sqDist = dot(unL, unL); |
|
|
|
return SmoothDistanceAttenuation(sqDist, invSqrAttenuationRadius); |
|
|
|
return SmoothDistanceAttenuation(sqDist, invSqRadius); |
|
|
|
} |
|
|
|
|
|
|
|
// Applies SmoothDistanceAttenuation() using the axis-aligned ellipsoid of the given dimensions. |
|
|
|