浏览代码

Update clearCoat for area light

/feature-ReflectionProbeFit
Sebastien Lagarde 7 年前
当前提交
97ec6d6c
共有 1 个文件被更改,包括 51 次插入52 次删除
  1. 103
      ScriptableRenderPipeline/HDRenderPipeline/HDRP/Material/Lit/Lit.hlsl

103
ScriptableRenderPipeline/HDRenderPipeline/HDRP/Material/Lit/Lit.hlsl


#define CLEAR_COAT_IOR 1.5
#define CLEAR_COAT_IETA (1.0 / CLEAR_COAT_IOR)
#define CLEAR_COAT_F0 0.04 // IORToFresnel0(CLEAR_COAT_IOR)
#define CLEAR_COAT_PERCEPTUAL_ROUGHNESS 0.01
#define CLEAR_COAT_ROUGHNESS ClampRoughnessForAnalyticalLights(PerceptualRoughnessToRoughness(CLEAR_COAT_PERCEPTUAL_ROUGHNESS))
#define CLEAR_COAT_PERCEPTUAL_ROUGHNESS 0.031622
#define CLEAR_COAT_ROUGHNESS (CLEAR_COAT_PERCEPTUAL_ROUGHNESS * CLEAR_COAT_PERCEPTUAL_ROUGHNESS) // 0.001
//-----------------------------------------------------------------------------
// Helper for cheap screen space raycasting

float3 ltcMagnitudeFresnel;
// Clear coat
float coatPartLambdaV;
float3 coatIblR;
float coatIblF; // Fresnel term for view vector
float coatPartLambdaV;
float3 coatIblR;
float coatIblF; // Fresnel term for view vector
float3x3 ltcTransformCoat; // Inverse transformation for GGX (4x VGPRs)
float ltcMagnitudeCoatFresnel;
// Refraction
float3 transmissionRefractV; // refracted view vector after exiting the shape

// TODO: the fit seems rather poor. The scaling factor of 0.5 allows us
// to match the reference for rough metals, but further darkens dielectrics.
preLightData.ltcMagnitudeFresnel = bsdfData.fresnel0 * ltcGGXFresnelMagnitudeDiff + (float3)ltcGGXFresnelMagnitude;
if (bsdfData.materialId == MATERIALID_LIT_CLEAR_COAT && HasMaterialFeatureFlag(MATERIALFEATUREFLAGS_LIT_CLEAR_COAT))
{
float2 uv = LTC_LUT_OFFSET + LTC_LUT_SCALE * float2(CLEAR_COAT_PERCEPTUAL_ROUGHNESS, theta * INV_HALF_PI);
// Get the inverse LTC matrix for GGX
// Note we load the matrix transpose (avoid to have to transpose it in shader)
preLightData.ltcTransformCoat = 0.0;
preLightData.ltcTransformCoat._m22 = 1.0;
preLightData.ltcTransformCoat._m00_m02_m11_m20 = SAMPLE_TEXTURE2D_ARRAY_LOD(_LtcData, s_linear_clamp_sampler, uv, LTC_GGX_MATRIX_INDEX, 0);
ltcMagnitude = SAMPLE_TEXTURE2D_ARRAY_LOD(_LtcData, s_linear_clamp_sampler, uv, LTC_MULTI_GGX_FRESNEL_DISNEY_DIFFUSE_INDEX, 0).rgb;
ltcGGXFresnelMagnitudeDiff = ltcMagnitude.r; // The difference of magnitudes of GGX and Fresnel
ltcGGXFresnelMagnitude = ltcMagnitude.g;
preLightData.ltcMagnitudeCoatFresnel = (CLEAR_COAT_F0 * ltcGGXFresnelMagnitudeDiff + (float3)ltcGGXFresnelMagnitude) * bsdfData.coatMask;
}
// refraction (forward only)
#ifdef REFRACTION_MODEL

float ltcValue;
// Evaluate the diffuse part
{
ltcValue = LTCEvaluate(P1, P2, B, preLightData.ltcTransformDiffuse);
ltcValue *= lightData.diffuseScale;
// We don't multiply by 'bsdfData.diffuseColor' here. It's done only once in PostEvaluateBSDF().
lighting.diffuse = preLightData.ltcMagnitudeDiffuse * ltcValue;
}
ltcValue = LTCEvaluate(P1, P2, B, preLightData.ltcTransformDiffuse);
// We don't multiply by 'bsdfData.diffuseColor' here. It's done only once in PostEvaluateBSDF().
lighting.diffuse = preLightData.ltcMagnitudeDiffuse * ltcValue;
[branch] if (bsdfData.enableTransmission)
{

// The matrix multiplication should not generate any extra ALU on GCN.
// TODO: double evaluation is very inefficient! This is a temporary solution.
ltcValue = LTCEvaluate(P1, P2, B, mul(flipMatrix, k_identity3x3));
ltcValue *= lightData.diffuseScale;
// Evaluate the specular part
ltcValue = LTCEvaluate(P1, P2, B, preLightData.ltcTransformSpecular);
lighting.specular = preLightData.ltcMagnitudeFresnel * ltcValue;
// TODO
// ltcValue = LTCEvaluate(P1, P2, B, preLightData.ltcXformClearCoat);
// ltcValue *= lightData.specularScale;
// specularLighting = preLightData.ltcClearCoatFresnelTerm * (ltcValue * bsdfData.coatCoverage);
}
// Evaluate the specular part
{
ltcValue = LTCEvaluate(P1, P2, B, preLightData.ltcTransformSpecular);
ltcValue *= lightData.specularScale;
lighting.specular += preLightData.ltcMagnitudeFresnel * ltcValue;
lighting.diffuse *= (1.0 - preLightData.ltcMagnitudeCoatFresnel);
lighting.specular *= (1.0 - preLightData.ltcMagnitudeCoatFresnel);
ltcValue = LTCEvaluate(P1, P2, B, preLightData.ltcTransformCoat);
lighting.specular += preLightData.ltcMagnitudeCoatFresnel * ltcValue;
lighting.diffuse *= lightData.color;
lighting.specular *= lightData.color;
lighting.diffuse *= lightData.color * lightData.diffuseScale;
lighting.specular *= lightData.color * lightData.specularScale;;
#endif // LIT_DISPLAY_REFERENCE_AREA
return lighting;

float ltcValue;
// Evaluate the diffuse part
{
// Polygon irradiance in the transformed configuration.
ltcValue = PolygonIrradiance(mul(lightVerts, preLightData.ltcTransformDiffuse));
ltcValue *= lightData.diffuseScale;
// We don't multiply by 'bsdfData.diffuseColor' here. It's done only once in PostEvaluateBSDF().
lighting.diffuse = preLightData.ltcMagnitudeDiffuse * ltcValue;
}
// Polygon irradiance in the transformed configuration.
ltcValue = PolygonIrradiance(mul(lightVerts, preLightData.ltcTransformDiffuse));
// We don't multiply by 'bsdfData.diffuseColor' here. It's done only once in PostEvaluateBSDF().
lighting.diffuse = preLightData.ltcMagnitudeDiffuse * ltcValue;
[branch] if (bsdfData.enableTransmission)
{

// Polygon irradiance in the transformed configuration.
// TODO: double evaluation is very inefficient! This is a temporary solution.
ltcValue = PolygonIrradiance(mul(lightVerts, ltcTransform));
ltcValue *= lightData.diffuseScale;
// We use diffuse lighting for accumulation since it is going to be blurred during the SSS pass.
// We don't multiply by 'bsdfData.diffuseColor' here. It's done only once in PostEvaluateBSDF().

// Evaluate the specular part
// Polygon irradiance in the transformed configuration.
ltcValue = PolygonIrradiance(mul(lightVerts, preLightData.ltcTransformSpecular));
lighting.specular += preLightData.ltcMagnitudeFresnel * ltcValue;
// TODO
// ltcValue = LTCEvaluate(lightVerts, V, bsdfData.coatNormalWS, preLightData.coatNdotV, preLightData.ltcXformClearCoat);
// lighting.specular = preLightData.ltcClearCoatFresnelTerm * (ltcValue * bsdfData.coatCoverage);
// modify matL value based on Fresnel transmission
// matL = mul(matL, preLightData.ltcCoatT);
// V = preLightData.coatRefractV;
}
// Evaluate the specular part
{
// Polygon irradiance in the transformed configuration.
ltcValue = PolygonIrradiance(mul(lightVerts, preLightData.ltcTransformSpecular));
ltcValue *= lightData.specularScale;
lighting.specular += preLightData.ltcMagnitudeFresnel * ltcValue;
lighting.diffuse *= (1.0 - preLightData.ltcMagnitudeCoatFresnel);
lighting.specular *= (1.0 - preLightData.ltcMagnitudeCoatFresnel);
ltcValue = PolygonIrradiance(mul(lightVerts, preLightData.ltcTransformCoat));
lighting.specular += preLightData.ltcMagnitudeCoatFresnel * ltcValue;
lighting.diffuse *= lightData.color;
lighting.specular *= lightData.color;
lighting.diffuse *= lightData.color * lightData.diffuseScale;
lighting.specular *= lightData.color * lightData.specularScale;
#endif // LIT_DISPLAY_REFERENCE_AREA
return lighting;

正在加载...
取消
保存