浏览代码

Merge pull request #1152 from Unity-Technologies/lw/multipass

Lw/multipass
/main
GitHub 7 年前
当前提交
87b74039
共有 18 个文件被更改,包括 1325 次插入1100 次删除
  1. 11
      ScriptableRenderPipeline/LightweightPipeline/LWRP/Data/LightweightPipelineAsset.cs
  2. 6
      ScriptableRenderPipeline/LightweightPipeline/LWRP/Editor/LightweightAssetEditor.cs
  3. 18
      ScriptableRenderPipeline/LightweightPipeline/LWRP/LightweightConstantBuffer.cs
  4. 799
      ScriptableRenderPipeline/LightweightPipeline/LWRP/LightweightPipeline.cs
  5. 92
      ScriptableRenderPipeline/LightweightPipeline/LWRP/LightweightPipelineUtils.cs
  6. 14
      ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/Input.hlsl
  7. 2
      ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/InputSurfaceSimple.hlsl
  8. 74
      ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/Lighting.hlsl
  9. 285
      ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/LightweightPassLit.hlsl
  10. 292
      ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/LightweightPassLitSimple.hlsl
  11. 18
      ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/LightweightPassLitSimple.hlsl.meta
  12. 155
      ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/Shadows.hlsl
  13. 11
      ScriptableRenderPipeline/LightweightPipeline/LWRP/Shaders/LightweightScreenSpaceShadows.shader
  14. 3
      ScriptableRenderPipeline/LightweightPipeline/LWRP/Shaders/LightweightStandard.shader
  15. 2
      ScriptableRenderPipeline/LightweightPipeline/LWRP/Shaders/LightweightStandardParticlesSimpleLighting.shader
  16. 3
      ScriptableRenderPipeline/LightweightPipeline/LWRP/Shaders/LightweightStandardSimpleLighting.shader
  17. 629
      ScriptableRenderPipeline/LightweightPipeline/LWRP/LightweightShadowPass.cs
  18. 11
      ScriptableRenderPipeline/LightweightPipeline/LWRP/LightweightShadowPass.cs.meta

11
ScriptableRenderPipeline/LightweightPipeline/LWRP/Data/LightweightPipelineAsset.cs


[SerializeField] private float m_RenderScale = 1.0f;
[SerializeField] private ShadowType m_ShadowType = ShadowType.HARD_SHADOWS;
[SerializeField] private ShadowResolution m_ShadowAtlasResolution = ShadowResolution._2048;
[SerializeField] private float m_ShadowNearPlaneOffset = 2.0f;
[SerializeField] private float m_ShadowDistance = 50.0f;
[SerializeField] private ShadowCascades m_ShadowCascades = ShadowCascades.FOUR_CASCADES;
[SerializeField] private float m_Cascade2Split = 0.25f;

"LightweightAsset.asset", null, null);
}
//[MenuItem("Assets/Create/Rendering/Lightweight Pipeline Resources", priority = CoreUtils.assetCreateMenuPriority1)]
static void CreateLightweightPipelineResources()
{

var instance = CreateInstance<LightweightPipelineEditorResources>();
AssetDatabase.CreateAsset(instance, string.Format("Assets/{0}.asset", typeof(LightweightPipelineEditorResources).Name));
}
class CreateLightweightPipelineAsset : EndNameEditAction
{

private static T LoadResourceFile<T>() where T : ScriptableObject
{
T resourceAsset = null;
var guids = AssetDatabase.FindAssets(typeof(T).Name + " t:scriptableobject", new []{m_SearchPathProject});
var guids = AssetDatabase.FindAssets(typeof(T).Name + " t:scriptableobject", new[] {m_SearchPathProject});
foreach (string guid in guids)
{
string path = AssetDatabase.GUIDToAssetPath(guid);

{
get { return (int)m_ShadowAtlasResolution; }
private set { m_ShadowAtlasResolution = (ShadowResolution)value; }
}
public float ShadowNearOffset
{
get { return m_ShadowNearPlaneOffset; }
private set { m_ShadowNearPlaneOffset = value; }
}
public float ShadowDistance

6
ScriptableRenderPipeline/LightweightPipeline/LWRP/Editor/LightweightAssetEditor.cs


public static GUIContent shadowType = new GUIContent("Type",
"Global shadow settings. Options are NO_SHADOW, HARD_SHADOWS and SOFT_SHADOWS.");
public static GUIContent shadowNearPlaneOffset = new GUIContent("Near Plane Offset",
"Offset shadow near plane to account for large triangles being distorted by pancaking.");
public static GUIContent shadowDistante = new GUIContent("Distance", "Max shadow rendering distance.");
public static GUIContent shadowAtlasResolution = new GUIContent("Shadowmap Resolution",

private SerializedProperty m_RequireDepthTextureProp;
private SerializedProperty m_RequireSoftParticlesProp;
private SerializedProperty m_ShadowTypeProp;
private SerializedProperty m_ShadowNearPlaneOffsetProp;
private SerializedProperty m_ShadowDistanceProp;
private SerializedProperty m_ShadowAtlasResolutionProp;
private SerializedProperty m_ShadowCascadesProp;

m_RequireDepthTextureProp = serializedObject.FindProperty("m_RequireDepthTexture");
m_RequireSoftParticlesProp = serializedObject.FindProperty("m_RequireSoftParticles");
m_ShadowTypeProp = serializedObject.FindProperty("m_ShadowType");
m_ShadowNearPlaneOffsetProp = serializedObject.FindProperty("m_ShadowNearPlaneOffset");
m_ShadowDistanceProp = serializedObject.FindProperty("m_ShadowDistance");
m_ShadowAtlasResolutionProp = serializedObject.FindProperty("m_ShadowAtlasResolution");
m_ShadowCascadesProp = serializedObject.FindProperty("m_ShadowCascades");

EditorGUI.indentLevel++;
CoreEditorUtils.DrawPopup(Styles.shadowType, m_ShadowTypeProp, Styles.shadowTypeOptions);
EditorGUILayout.PropertyField(m_ShadowAtlasResolutionProp, Styles.shadowAtlasResolution);
EditorGUILayout.PropertyField(m_ShadowNearPlaneOffsetProp, Styles.shadowNearPlaneOffset);
m_ShadowDistanceProp.floatValue = Mathf.Max(0.0f, EditorGUILayout.FloatField(Styles.shadowDistante, m_ShadowDistanceProp.floatValue));
CoreEditorUtils.DrawPopup(Styles.shadowCascades, m_ShadowCascadesProp, Styles.shadowCascadeOptions);

18
ScriptableRenderPipeline/LightweightPipeline/LWRP/LightweightConstantBuffer.cs


{
public static int _MainLightPosition;
public static int _MainLightColor;
public static int _MainLightDistanceAttenuation;
public static int _MainLightSpotDir;
public static int _MainLightSpotAttenuation;
public static int _MainLightCookie;
public static int _WorldToLight;

public static int _AdditionalLightDistanceAttenuation;
public static int _AdditionalLightSpotDir;
public static int _AdditionalLightSpotAttenuation;
public static int _LightIndexBuffer;
public static class ShadowConstantBuffer
public static class DirectionalShadowConstantBuffer
{
public static int _WorldToShadow;
public static int _ShadowData;

public static int _ShadowOffset2;
public static int _ShadowOffset3;
public static int _ShadowmapSize;
}
public static class LocalShadowConstantBuffer
{
public static int _LocalWorldToShadowAtlas;
public static int _LocalShadowStrength;
public static int _LocalShadowOffset0;
public static int _LocalShadowOffset1;
public static int _LocalShadowOffset2;
public static int _LocalShadowOffset3;
public static int _LocalShadowmapSize;
}
}

799
ScriptableRenderPipeline/LightweightPipeline/LWRP/LightweightPipeline.cs


using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Text;
#if UNITY_EDITOR
using UnityEditor.Experimental.Rendering.LightweightPipeline;
#endif

namespace UnityEngine.Experimental.Rendering.LightweightPipeline
{
[Serializable]
public class ShadowSettings
{
public bool enabled;
public bool screenSpace;
public int shadowAtlasWidth;
public int shadowAtlasHeight;
public float maxShadowDistance;
public int directionalLightCascadeCount;
public Vector3 directionalLightCascades;
public float directionalLightNearPlaneOffset;
public RenderTextureFormat shadowmapTextureFormat;
public RenderTextureFormat screenspaceShadowmapTextureFormat;
static ShadowSettings defaultShadowSettings = null;
public static ShadowSettings Default
{
get
{
if (defaultShadowSettings == null)
{
defaultShadowSettings = new ShadowSettings();
defaultShadowSettings.enabled = true;
defaultShadowSettings.screenSpace = true;
defaultShadowSettings.shadowAtlasHeight = defaultShadowSettings.shadowAtlasWidth = 4096;
defaultShadowSettings.directionalLightCascadeCount = 1;
defaultShadowSettings.directionalLightCascades = new Vector3(0.05F, 0.2F, 0.3F);
defaultShadowSettings.directionalLightNearPlaneOffset = 5;
defaultShadowSettings.maxShadowDistance = 1000.0F;
defaultShadowSettings.shadowmapTextureFormat = RenderTextureFormat.Shadowmap;
defaultShadowSettings.screenspaceShadowmapTextureFormat = RenderTextureFormat.R8;
}
return defaultShadowSettings;
}
}
}
public struct ShadowSliceData
{
public Matrix4x4 shadowTransform;
public int atlasX;
public int atlasY;
public int shadowResolution;
}
public LightShadows shadowMapSampleType;
public List<VisibleLight> visibleLights;
public List<int> localLightIndices;
}
public enum MixedLightingSetup

{
private readonly LightweightPipelineAsset m_Asset;
private LightweightShadowPass m_ShadowPass;
private static readonly int kMaxVisibleLights = 16;
private static readonly int kMaxVisibleLocalLights = 16;
// Lights are culled per-object. This holds the maximum amount of lights that can be shaded per-object.
// The engine fills in the lights indices per-object in unity4_LightIndices0 and unity_4LightIndices1
private static readonly int kMaxPerObjectLights = 8;
// Lights are culled per-object. In platforms that don't use StructuredBuffer
// the engine will set 4 light indices in the following constant unity_4LightIndices0
// Additionally the engine set unity_4LightIndices1 but LWRP doesn't use that.
private static readonly int kMaxNonIndexedLocalLights = 4;
private static readonly int kMaxVertexLights = 4;
private static readonly int kMaxVertexLights = 4;
private const int kDepthStencilBufferBits = 32;
private static readonly float kRenderScaleThreshold = 0.05f;

private Vector4 kDefaultLightSpotDirection = new Vector4(0.0f, 0.0f, 1.0f, 0.0f);
private Vector4 kDefaultLightSpotAttenuation = new Vector4(0.0f, 1.0f, 0.0f, 0.0f);
private Vector4[] m_LightPositions = new Vector4[kMaxVisibleLights];
private Vector4[] m_LightColors = new Vector4[kMaxVisibleLights];
private Vector4[] m_LightDistanceAttenuations = new Vector4[kMaxVisibleLights];
private Vector4[] m_LightSpotDirections = new Vector4[kMaxVisibleLights];
private Vector4[] m_LightSpotAttenuations = new Vector4[kMaxVisibleLights];
private Vector4[] m_LightPositions = new Vector4[kMaxVisibleLocalLights];
private Vector4[] m_LightColors = new Vector4[kMaxVisibleLocalLights];
private Vector4[] m_LightDistanceAttenuations = new Vector4[kMaxVisibleLocalLights];
private Vector4[] m_LightSpotDirections = new Vector4[kMaxVisibleLocalLights];
private Vector4[] m_LightSpotAttenuations = new Vector4[kMaxVisibleLocalLights];
private const int kMaxCascades = 4;
private int m_ShadowCasterCascadesCount;
private int m_ShadowMapRTID;
private int m_ScreenSpaceShadowMapRTID;
private Matrix4x4[] m_ShadowMatrices = new Matrix4x4[kMaxCascades + 1];
private RenderTexture m_ShadowMapRT;
private RenderTargetIdentifier m_ScreenSpaceShadowMapRT;
private RenderTargetIdentifier m_ColorRT;
private RenderTargetIdentifier m_CopyColorRT;
private RenderTargetIdentifier m_DepthRT;

private bool m_DepthRenderBuffer;
private MixedLightingSetup m_MixedLightingSetup;
private const int kDepthStencilBufferBits = 32;
private const int kShadowBufferBits = 16;
private Vector4[] m_DirectionalShadowSplitDistances = new Vector4[kMaxCascades];
private Vector4 m_DirectionalShadowSplitRadii;
private ShadowSettings m_ShadowSettings = ShadowSettings.Default;
private ShadowSliceData[] m_ShadowSlices = new ShadowSliceData[kMaxCascades];
private ComputeBuffer m_LightIndicesBuffer;
private List<int> m_LocalLightIndices;
private int m_MaxLocalLightsShadedPerPass;
private bool m_UseComputeBuffer;
// Pipeline pass names
private static readonly ShaderPassName m_DepthPrepass = new ShaderPassName("DepthOnly");

private PostProcessLayer m_CameraPostProcessLayer;
private CameraComparer m_CameraComparer = new CameraComparer();
private LightComparer m_LightComparer = new LightComparer();
// Maps from sorted light indices to original unsorted. We need this for shadow rendering
// and per-object light lists.
private List<int> m_SortedLightIndexMap = new List<int>();
private Dictionary<VisibleLight, int> m_VisibleLightsIDMap = new Dictionary<VisibleLight, int>(new LightEqualityComparer());
private Material m_ScreenSpaceShadowsMaterial;
private int m_BlitTexID = Shader.PropertyToID("_BlitTex");
private CopyTextureSupport m_CopyTextureSupport;

m_Asset = asset;
BuildShadowSettings();
SetRenderingFeatures();
PerFrameBuffer._GlossyEnvironmentColor = Shader.PropertyToID("_GlossyEnvironmentColor");

PerCameraBuffer._MainLightPosition = Shader.PropertyToID("_MainLightPosition");
PerCameraBuffer._MainLightColor = Shader.PropertyToID("_MainLightColor");
PerCameraBuffer._MainLightDistanceAttenuation = Shader.PropertyToID("_MainLightDistanceAttenuation");
PerCameraBuffer._MainLightSpotDir = Shader.PropertyToID("_MainLightSpotDir");
PerCameraBuffer._MainLightSpotAttenuation = Shader.PropertyToID("_MainLightSpotAttenuation");
PerCameraBuffer._MainLightCookie = Shader.PropertyToID("_MainLightCookie");
PerCameraBuffer._WorldToLight = Shader.PropertyToID("_WorldToLight");
PerCameraBuffer._AdditionalLightCount = Shader.PropertyToID("_AdditionalLightCount");

PerCameraBuffer._AdditionalLightSpotDir = Shader.PropertyToID("_AdditionalLightSpotDir");
PerCameraBuffer._AdditionalLightSpotAttenuation = Shader.PropertyToID("_AdditionalLightSpotAttenuation");
PerCameraBuffer._LightIndexBuffer = Shader.PropertyToID("_LightIndexBuffer");
ShadowConstantBuffer._WorldToShadow = Shader.PropertyToID("_WorldToShadow");
ShadowConstantBuffer._ShadowData = Shader.PropertyToID("_ShadowData");
ShadowConstantBuffer._DirShadowSplitSpheres = Shader.PropertyToID("_DirShadowSplitSpheres");
ShadowConstantBuffer._DirShadowSplitSphereRadii = Shader.PropertyToID("_DirShadowSplitSphereRadii");
ShadowConstantBuffer._ShadowOffset0 = Shader.PropertyToID("_ShadowOffset0");
ShadowConstantBuffer._ShadowOffset1 = Shader.PropertyToID("_ShadowOffset1");
ShadowConstantBuffer._ShadowOffset2 = Shader.PropertyToID("_ShadowOffset2");
ShadowConstantBuffer._ShadowOffset3 = Shader.PropertyToID("_ShadowOffset3");
ShadowConstantBuffer._ShadowmapSize = Shader.PropertyToID("_ShadowmapSize");
m_ShadowMapRTID = Shader.PropertyToID("_ShadowMap");
m_ScreenSpaceShadowMapRTID = Shader.PropertyToID("_ScreenSpaceShadowMap");
m_ScreenSpaceShadowMapRT = new RenderTargetIdentifier(m_ScreenSpaceShadowMapRTID);
m_ColorRT = new RenderTargetIdentifier(CameraRenderTargetID.color);
m_CopyColorRT = new RenderTargetIdentifier(CameraRenderTargetID.copyColor);

m_CopyTextureSupport = SystemInfo.copyTextureSupport;
for (int i = 0; i < kMaxCascades; ++i)
m_DirectionalShadowSplitDistances[i] = new Vector4(0.0f, 0.0f, 0.0f, 0.0f);
m_DirectionalShadowSplitRadii = new Vector4(0.0f, 0.0f, 0.0f, 0.0f);
// TODO: Profile performance of using ComputeBuffer on mobiles that support it vs
// fixed buffer size
if (Application.isMobilePlatform || Application.platform == RuntimePlatform.WebGLPlayer)
m_UseComputeBuffer = false;
else
m_UseComputeBuffer = true;
m_LightIndicesBuffer = null;
m_MaxLocalLightsShadedPerPass = m_UseComputeBuffer ? kMaxVisibleLocalLights : kMaxNonIndexedLocalLights;
m_LocalLightIndices = new List<int>(m_MaxLocalLightsShadedPerPass);
m_ShadowPass = new LightweightShadowPass(m_Asset, m_MaxLocalLightsShadedPerPass);
// Let engine know we have MSAA on for cases where we support MSAA backbuffer
if (QualitySettings.antiAliasing != m_Asset.MSAASampleCount)

m_BlitQuad = LightweightUtils.CreateQuadMesh(false);
m_BlitMaterial = CoreUtils.CreateEngineMaterial(m_Asset.BlitShader);
m_CopyDepthMaterial = CoreUtils.CreateEngineMaterial(m_Asset.CopyDepthShader);
m_ScreenSpaceShadowsMaterial = CoreUtils.CreateEngineMaterial(m_Asset.ScreenSpaceShadowShader);
m_ErrorMaterial = CoreUtils.CreateEngineMaterial("Hidden/InternalErrorShader");
}

#if UNITY_EDITOR
SceneViewDrawMode.ResetDrawMode();
#endif
if (m_LightIndicesBuffer != null)
{
m_LightIndicesBuffer.Release();
m_LightIndicesBuffer = null;
}
}
private void SetRenderingFeatures()

continue;
var cmd = CommandBufferPool.Get("");
cullingParameters.shadowDistance = Mathf.Min(m_ShadowSettings.maxShadowDistance,
m_CurrCamera.farClipPlane);
cullingParameters.shadowDistance = Mathf.Min(m_ShadowPass.RenderingDistance, m_CurrCamera.farClipPlane);
#if UNITY_EDITOR
// Emit scene view UI

LightData lightData;
InitializeLightData(visibleLights, out lightData);
bool shadows = ShadowPass(visibleLights, ref context, ref lightData);
bool screenspaceShadows = m_ShadowPass.Execute(ref m_CullResults, ref lightData, ref context);
SetupFrameRenderingConfiguration(out frameRenderingConfiguration, shadows, stereoEnabled, sceneViewCamera);
SetupIntermediateResources(frameRenderingConfiguration, shadows, ref context);
SetupFrameRenderingConfiguration(out frameRenderingConfiguration, screenspaceShadows, stereoEnabled, sceneViewCamera);
SetupIntermediateResources(frameRenderingConfiguration, screenspaceShadows, ref context);
// SetupCameraProperties does the following:
// Setup Camera RenderTarget and Viewport

if (LightweightUtils.HasFlag(frameRenderingConfiguration, FrameRenderingConfiguration.DepthPrePass))
DepthPass(ref context, frameRenderingConfiguration);
if (shadows && m_ShadowSettings.screenSpace)
ShadowCollectPass(visibleLights, ref context, ref lightData, frameRenderingConfiguration);
if (screenspaceShadows)
m_ShadowPass.CollectShadows(m_CurrCamera, frameRenderingConfiguration, ref context);
ForwardPass(visibleLights, frameRenderingConfiguration, ref context, ref lightData, stereoEnabled);
ForwardPass(frameRenderingConfiguration, ref lightData, ref context);
cmd.name = "After Camera Render";
#if UNITY_EDITOR

cmd.ReleaseTemporaryRT(m_ScreenSpaceShadowMapRTID);
context.Submit();
cmd.ReleaseTemporaryRT(CameraRenderTargetID.depthCopy);
cmd.ReleaseTemporaryRT(CameraRenderTargetID.depth);
cmd.ReleaseTemporaryRT(CameraRenderTargetID.color);

context.Submit();
if (m_ShadowMapRT)
{
RenderTexture.ReleaseTemporary(m_ShadowMapRT);
m_ShadowMapRT = null;
}
}
}
private bool ShadowPass(List<VisibleLight> visibleLights, ref ScriptableRenderContext context, ref LightData lightData)
{
m_ShadowMapRT = null;
if (m_Asset.AreShadowsEnabled() && lightData.mainLightIndex != -1)
{
VisibleLight mainLight = visibleLights[lightData.mainLightIndex];
if (mainLight.light.shadows != LightShadows.None)
{
if (!LightweightUtils.IsSupportedShadowType(mainLight.lightType))
{
Debug.LogWarning("Only directional and spot shadows are supported by LightweightPipeline.");
return false;
}
// There's no way to map shadow light indices. We need to pass in the original unsorted index.
// If no additional lights then no light sorting is performed and the indices match.
int shadowOriginalIndex = (lightData.totalAdditionalLightsCount > 0) ? GetLightUnsortedIndex(lightData.mainLightIndex) : lightData.mainLightIndex;
bool shadowsRendered = RenderShadows(ref m_CullResults, ref mainLight, shadowOriginalIndex, ref context);
if (shadowsRendered)
{
lightData.shadowMapSampleType = (m_Asset.ShadowSetting != ShadowType.SOFT_SHADOWS) ? LightShadows.Hard : mainLight.light.shadows;
// In order to avoid shader variants explosion we only do hard shadows when sampling shadowmap in the lit pass.
// GLES2 platform is forced to hard single cascade shadows.
if (!m_ShadowSettings.screenSpace)
lightData.shadowMapSampleType = LightShadows.Hard;
}
else
{
lightData.shadowMapSampleType = LightShadows.None;
}
m_ShadowPass.Dispose(cmd);
return shadowsRendered;
}
context.Submit();
return false;
}
private void ShadowCollectPass(List<VisibleLight> visibleLights, ref ScriptableRenderContext context, ref LightData lightData, FrameRenderingConfiguration frameRenderingConfiguration)
{
CommandBuffer cmd = CommandBufferPool.Get("Collect Shadows");
SetShadowCollectPassKeywords(cmd, visibleLights[lightData.mainLightIndex], ref lightData);
// Note: The source isn't actually 'used', but there's an engine peculiarity (bug) that
// doesn't like null sources when trying to determine a stereo-ized blit. So for proper
// stereo functionality, we use the screen-space shadow map as the source (until we have
// a better solution).
// An alternative would be DrawProcedural, but that would require further changes in the shader.
cmd.Blit(m_ScreenSpaceShadowMapRT, m_ScreenSpaceShadowMapRT, m_ScreenSpaceShadowsMaterial);
StartStereoRendering(ref context, frameRenderingConfiguration);
context.ExecuteCommandBuffer(cmd);
StopStereoRendering(ref context, frameRenderingConfiguration);
CommandBufferPool.Release(cmd);
}
private void DepthPass(ref ScriptableRenderContext context, FrameRenderingConfiguration frameRenderingConfiguration)

renderQueueRange = RenderQueueRange.opaque
};
StartStereoRendering(ref context, frameRenderingConfiguration);
LightweightUtils.StartStereoRendering(m_CurrCamera, ref context, frameRenderingConfiguration);
StopStereoRendering(ref context, frameRenderingConfiguration);
LightweightUtils.StopStereoRendering(m_CurrCamera, ref context, frameRenderingConfiguration);
private void ForwardPass(List<VisibleLight> visibleLights, FrameRenderingConfiguration frameRenderingConfiguration, ref ScriptableRenderContext context, ref LightData lightData, bool stereoEnabled)
private void ForwardPass(FrameRenderingConfiguration frameRenderingConfiguration, ref LightData lightData, ref ScriptableRenderContext context)
SetupShaderConstants(visibleLights, ref context, ref lightData);
SetupShaderConstants(ref lightData, ref context);
RendererConfiguration rendererSettings = GetRendererSettings(ref lightData);

}
}
private void BuildShadowSettings()
{
m_ShadowSettings = ShadowSettings.Default;
m_ShadowSettings.screenSpace = SystemInfo.graphicsDeviceType != GraphicsDeviceType.OpenGLES2;
m_ShadowSettings.directionalLightCascadeCount = (m_ShadowSettings.screenSpace) ? m_Asset.CascadeCount : 1;
m_ShadowSettings.shadowAtlasWidth = m_Asset.ShadowAtlasResolution;
m_ShadowSettings.shadowAtlasHeight = m_Asset.ShadowAtlasResolution;
m_ShadowSettings.maxShadowDistance = m_Asset.ShadowDistance;
m_ShadowSettings.shadowmapTextureFormat = SystemInfo.SupportsRenderTextureFormat(RenderTextureFormat.Shadowmap)
? RenderTextureFormat.Shadowmap
: RenderTextureFormat.Depth;
m_ShadowSettings.screenspaceShadowmapTextureFormat = SystemInfo.SupportsRenderTextureFormat(RenderTextureFormat.R8)
? RenderTextureFormat.R8
: RenderTextureFormat.ARGB32;
switch (m_ShadowSettings.directionalLightCascadeCount)
{
case 1:
m_ShadowSettings.directionalLightCascades = new Vector3(1.0f, 0.0f, 0.0f);
break;
case 2:
m_ShadowSettings.directionalLightCascades = new Vector3(m_Asset.Cascade2Split, 1.0f, 0.0f);
break;
default:
m_ShadowSettings.directionalLightCascades = m_Asset.Cascade4Split;
break;
}
}
private void SetupFrameRenderingConfiguration(out FrameRenderingConfiguration configuration, bool shadows, bool stereoEnabled, bool sceneViewCamera)
private void SetupFrameRenderingConfiguration(out FrameRenderingConfiguration configuration, bool screenspaceShadows, bool stereoEnabled, bool sceneViewCamera)
{
configuration = (stereoEnabled) ? FrameRenderingConfiguration.Stereo : FrameRenderingConfiguration.None;
if (stereoEnabled && XRSettings.eyeTextureDesc.dimension == TextureDimension.Tex2DArray)

if (sceneViewCamera)
m_RequireDepthTexture = true;
if (shadows)
{
m_RequireDepthTexture = m_ShadowSettings.screenSpace;
if (!msaaEnabled)
intermediateTexture = true;
}
m_RequireDepthTexture = m_RequireDepthTexture || screenspaceShadows;
if (msaaEnabled)
{

// If msaa is enabled we don't use a depth renderbuffer as we might not have support to Texture2DMS to resolve depth.
// Instead we use a depth prepass and whenever depth is needed we use the 1 sample depth from prepass.
// Screen space shadows require depth before opaque shading.
if (!msaaEnabled && !shadows)
if (!msaaEnabled && !screenspaceShadows)
{
bool supportsDepthCopy = m_CopyTextureSupport != CopyTextureSupport.None && m_Asset.CopyDepthShader.isSupported;
m_DepthRenderBuffer = true;

if (LightweightUtils.HasFlag(renderingConfig, FrameRenderingConfiguration.DepthCopy))
cmd.GetTemporaryRT(CameraRenderTargetID.depthCopy, depthRTDesc, FilterMode.Bilinear);
if (shadows && m_ShadowSettings.screenSpace)
{
var screenspaceShadowmapDesc = baseDesc;
screenspaceShadowmapDesc.depthBufferBits = 0;
screenspaceShadowmapDesc.colorFormat = m_ShadowSettings.screenspaceShadowmapTextureFormat;
cmd.GetTemporaryRT(m_ScreenSpaceShadowMapRTID, screenspaceShadowmapDesc, FilterMode.Bilinear);
}
m_ShadowPass.InitializeResources(cmd, baseDesc);
}
var colorRTDesc = baseDesc;

cmd.GetTemporaryRT(CameraRenderTargetID.copyColor, colorRTDesc, FilterMode.Point);
}
private void SetupShaderConstants(List<VisibleLight> visibleLights, ref ScriptableRenderContext context, ref LightData lightData)
private void SetupShaderConstants(ref LightData lightData, ref ScriptableRenderContext context)
SetupShaderLightConstants(cmd, visibleLights, ref lightData);
SetShaderKeywords(cmd, ref lightData, visibleLights);
SetupShaderLightConstants(cmd, ref lightData);
SetShaderKeywords(cmd, ref lightData);
context.ExecuteCommandBuffer(cmd);
CommandBufferPool.Release(cmd);
}

int visibleLightsCount = Math.Min(visibleLights.Count, m_Asset.MaxPixelLights);
m_SortedLightIndexMap.Clear();
m_LocalLightIndices.Clear();
for (int i = 0; i < visibleLights.Count; ++i)
{
if (visibleLights[i].lightType != LightType.Directional)
m_LocalLightIndices.Add(i);
if (m_LocalLightIndices.Count >= m_MaxLocalLightsShadedPerPass)
break;
}
lightData.shadowMapSampleType = LightShadows.None;
// Clear to default all light constant data
for (int i = 0; i < kMaxVisibleLocalLights; ++i)
InitializeLightConstants(visibleLights, -1, out m_LightPositions[i],
out m_LightColors[i],
out m_LightDistanceAttenuations[i],
out m_LightSpotDirections[i],
out m_LightSpotAttenuations[i]);
if (visibleLightsCount <= 1)
lightData.mainLightIndex = GetMainLight(visibleLights);
else
lightData.mainLightIndex = SortLights(visibleLights);
int visibleLightsCount = Math.Min(visibleLights.Count, m_Asset.MaxPixelLights);
lightData.mainLightIndex = GetMainLight(visibleLights);
int additionalPixelLightsCount = visibleLightsCount - mainLightPresent;
int vertexLightCount = (m_Asset.SupportsVertexLight) ? Math.Min(visibleLights.Count, kMaxPerObjectLights) - additionalPixelLightsCount - mainLightPresent : 0;
int additionalPixelLightsCount = Math.Min(visibleLightsCount - mainLightPresent, m_MaxLocalLightsShadedPerPass);
int vertexLightCount = (m_Asset.SupportsVertexLight) ? Math.Min(visibleLights.Count, m_MaxLocalLightsShadedPerPass) - additionalPixelLightsCount : 0;
lightData.visibleLights = visibleLights;
lightData.localLightIndices = m_LocalLightIndices;
}
private int SortLights(List<VisibleLight> visibleLights)
{
int totalVisibleLights = visibleLights.Count;
m_VisibleLightsIDMap.Clear();
for (int i = 0; i < totalVisibleLights; ++i)
m_VisibleLightsIDMap.Add(visibleLights[i], i);
if (lightData.totalAdditionalLightsCount > 0)
{
int[] perObjectLightIndexMap = m_CullResults.GetLightIndexMap();
int directionalLightCount = 0;
// Sorts light so we have all directionals first, then local lights.
// Directionals are sorted further by shadow, cookie and intensity
// Locals are sorted further by shadow, cookie and distance to camera
m_LightComparer.CurrCamera = m_CurrCamera;
visibleLights.Sort(m_LightComparer);
// Disable all directional lights from the perobject light indices
for (int i = 0; i < visibleLights.Count; ++i)
{
VisibleLight light = visibleLights[i];
if (light.lightType == LightType.Directional)
perObjectLightIndexMap[i] = -1;
else
perObjectLightIndexMap[i] -= directionalLightCount;
}
m_CullResults.SetLightIndexMap(perObjectLightIndexMap);
for (int i = 0; i < totalVisibleLights; ++i)
m_SortedLightIndexMap.Add(m_VisibleLightsIDMap[visibleLights[i]]);
// if not using a compute buffer, engine will set indices in 2 vec4 constants
// unity_4LightIndices0 and unity_4LightIndices1
if (m_UseComputeBuffer)
{
int lightIndicesCount = m_CullResults.GetLightIndicesCount();
if (lightIndicesCount > 0)
{
if (m_LightIndicesBuffer == null)
{
m_LightIndicesBuffer = new ComputeBuffer(lightIndicesCount, sizeof(int));
}
else if (m_LightIndicesBuffer.count < lightIndicesCount)
{
m_LightIndicesBuffer.Release();
m_LightIndicesBuffer = new ComputeBuffer(lightIndicesCount, sizeof(int));
}
return GetMainLight(visibleLights);
m_CullResults.FillLightIndices(m_LightIndicesBuffer);
}
}
}
// How main light is decided:
// If shadows enabled, main light is always a shadow casting light. Directional has priority over local lights.
// Otherwise directional lights have priority based on cookie support and intensity
// Main Light is always a directional light
bool shadowsEnabled = m_Asset.AreShadowsEnabled();
int brighestDirectionalIndex = -1;
for (int i = 0; i < totalVisibleLights; ++i)
{
VisibleLight currLight = visibleLights[i];

// In this case we either have no main light or already found it.
if (currLight.light == null)
break;
// Shadow lights are sorted by type (directional > puctual) and intensity
// The first shadow light we find in the list is the main light
if (shadowsEnabled && currLight.light.shadows != LightShadows.None && LightweightUtils.IsSupportedShadowType(currLight.lightType))
return i;
if (currLight.lightType == LightType.Directional && brighestDirectionalIndex == -1)
brighestDirectionalIndex = i;
if (currLight.lightType == LightType.Directional)
return i;
return brighestDirectionalIndex;
return -1;
}
private void InitializeLightConstants(List<VisibleLight> lights, int lightIndex, out Vector4 lightPos, out Vector4 lightColor, out Vector4 lightDistanceAttenuation, out Vector4 lightSpotDir,

Shader.SetGlobalVector(PerCameraBuffer._ScaledScreenParams, new Vector4(cameraWidth, cameraHeight, 1.0f + 1.0f / cameraWidth, 1.0f + 1.0f / cameraHeight));
}
private void SetupShaderLightConstants(CommandBuffer cmd, List<VisibleLight> lights, ref LightData lightData)
private void SetupShaderLightConstants(CommandBuffer cmd, ref LightData lightData)
SetupMainLightConstants(cmd, lights, lightData.mainLightIndex);
SetupAdditionalListConstants(cmd, lights, ref lightData);
SetupMainLightConstants(cmd, ref lightData);
SetupAdditionalListConstants(cmd, ref lightData);
private void SetupMainLightConstants(CommandBuffer cmd, List<VisibleLight> lights, int lightIndex)
private void SetupMainLightConstants(CommandBuffer cmd, ref LightData lightData)
InitializeLightConstants(lights, lightIndex, out lightPos, out lightColor, out lightDistanceAttenuation, out lightSpotDir, out lightSpotAttenuation);
List<VisibleLight> lights = lightData.visibleLights;
InitializeLightConstants(lightData.visibleLights, lightData.mainLightIndex, out lightPos, out lightColor, out lightDistanceAttenuation, out lightSpotDir, out lightSpotAttenuation);
if (lightIndex >= 0)
if (lightData.mainLightIndex >= 0)
LightType mainLightType = lights[lightIndex].lightType;
Light mainLight = lights[lightIndex].light;
VisibleLight mainLight = lights[lightData.mainLightIndex];
Light mainLightRef = mainLight.light;
if (LightweightUtils.IsSupportedCookieType(mainLightType) && mainLight.cookie != null)
if (LightweightUtils.IsSupportedCookieType(mainLight.lightType) && mainLightRef.cookie != null)
LightweightUtils.GetLightCookieMatrix(lights[lightIndex], out lightCookieMatrix);
cmd.SetGlobalTexture(PerCameraBuffer._MainLightCookie, mainLight.cookie);
LightweightUtils.GetLightCookieMatrix(mainLight, out lightCookieMatrix);
cmd.SetGlobalTexture(PerCameraBuffer._MainLightCookie, mainLightRef.cookie);
cmd.SetGlobalVector(PerCameraBuffer._MainLightPosition, lightPos);
cmd.SetGlobalVector(PerCameraBuffer._MainLightPosition, new Vector4(lightPos.x, lightPos.y, lightPos.z, lightDistanceAttenuation.w));
cmd.SetGlobalVector(PerCameraBuffer._MainLightDistanceAttenuation, lightDistanceAttenuation);
cmd.SetGlobalVector(PerCameraBuffer._MainLightSpotDir, lightSpotDir);
cmd.SetGlobalVector(PerCameraBuffer._MainLightSpotAttenuation, lightSpotAttenuation);
private void SetupAdditionalListConstants(CommandBuffer cmd, List<VisibleLight> lights, ref LightData lightData)
private void SetupAdditionalListConstants(CommandBuffer cmd, ref LightData lightData)
int additionalLightIndex = 0;
List<VisibleLight> lights = lightData.visibleLights;
// We need to update per-object light list with the proper map to our global additional light buffer
// First we initialize all lights in the map to -1 to tell the system to discard main light index and
// remaining lights in the scene that don't fit the max additional light buffer (kMaxVisibileAdditionalLights)
int[] perObjectLightIndexMap = m_CullResults.GetLightIndexMap();
for (int i = 0; i < lights.Count; ++i)
perObjectLightIndexMap[i] = -1;
for (int i = 0; i < lights.Count && additionalLightIndex < kMaxVisibleLights; ++i)
int localLightsCount = 0;
for (int i = 0; i < lights.Count && localLightsCount < kMaxVisibleLocalLights; ++i)
if (i != lightData.mainLightIndex)
VisibleLight light = lights[i];
if (light.lightType != LightType.Directional)
// The engine performs per-object light culling and initialize 8 light indices into two vec4 constants unity_4LightIndices0 and unity_4LightIndices1.
// In the shader we iterate over each visible light using the indices provided in these constants to index our global light buffer
// ex: first light position would be m_LightPosisitions[unity_4LightIndices[0]];
// However since we sorted the lights we need to tell the engine how to map the original/unsorted indices to our global buffer
// We do it by settings the perObjectLightIndexMap to the appropriate additionalLightIndex.
perObjectLightIndexMap[GetLightUnsortedIndex(i)] = additionalLightIndex;
InitializeLightConstants(lights, i, out m_LightPositions[additionalLightIndex],
out m_LightColors[additionalLightIndex],
out m_LightDistanceAttenuations[additionalLightIndex],
out m_LightSpotDirections[additionalLightIndex],
out m_LightSpotAttenuations[additionalLightIndex]);
additionalLightIndex++;
InitializeLightConstants(lights, i, out m_LightPositions[localLightsCount],
out m_LightColors[localLightsCount],
out m_LightDistanceAttenuations[localLightsCount],
out m_LightSpotDirections[localLightsCount],
out m_LightSpotAttenuations[localLightsCount]);
localLightsCount++;
m_CullResults.SetLightIndexMap(perObjectLightIndexMap);
// if not using a compute buffer, engine will set indices in 2 vec4 constants
// unity_4LightIndices0 and unity_4LightIndices1
if (m_UseComputeBuffer)
cmd.SetGlobalBuffer("_LightIndexBuffer", m_LightIndicesBuffer);
// Clear to default all light cosntant data
for (int i = 0; i < kMaxVisibleLights; ++i)
InitializeLightConstants(lights, -1, out m_LightPositions[additionalLightIndex],
out m_LightColors[additionalLightIndex],
out m_LightDistanceAttenuations[additionalLightIndex],
out m_LightSpotDirections[additionalLightIndex],
out m_LightSpotAttenuations[additionalLightIndex]);
}
cmd.SetGlobalVectorArray(PerCameraBuffer._AdditionalLightPosition, m_LightPositions);

cmd.SetGlobalVectorArray(PerCameraBuffer._AdditionalLightSpotAttenuation, m_LightSpotAttenuations);
}
private void SetupShadowCasterConstants(CommandBuffer cmd, ref VisibleLight visibleLight, Matrix4x4 proj, float cascadeResolution)
{
Light light = visibleLight.light;
float bias = 0.0f;
float normalBias = 0.0f;
// Use same kernel radius as built-in pipeline so we can achieve same bias results
// with the default light bias parameters.
const float kernelRadius = 3.65f;
if (visibleLight.lightType == LightType.Directional)
{
// Scale bias by cascade's world space depth range.
// Directional shadow lights have orthogonal projection.
// proj.m22 = -2 / (far - near) since the projection's depth range is [-1.0, 1.0]
// In order to be correct we should multiply bias by 0.5 but this introducing aliasing along cascades more visible.
float sign = (SystemInfo.usesReversedZBuffer) ? 1.0f : -1.0f;
bias = light.shadowBias * proj.m22 * sign;
// Currently only square POT cascades resolutions are used.
// We scale normalBias
double frustumWidth = 2.0 / (double)proj.m00;
double frustumHeight = 2.0 / (double)proj.m11;
float texelSizeX = (float)(frustumWidth / (double)cascadeResolution);
float texelSizeY = (float)(frustumHeight / (double)cascadeResolution);
float texelSize = Mathf.Max(texelSizeX, texelSizeY);
// Since we are applying normal bias on caster side we want an inset normal offset
// thus we use a negative normal bias.
normalBias = -light.shadowNormalBias * texelSize * kernelRadius;
}
else if (visibleLight.lightType == LightType.Spot)
{
float sign = (SystemInfo.usesReversedZBuffer) ? -1.0f : 1.0f;
bias = light.shadowBias * sign;
normalBias = 0.0f;
}
else
{
Debug.LogWarning("Only spot and directional shadow casters are supported in lightweight pipeline");
}
Vector3 lightDirection = -visibleLight.localToWorld.GetColumn(2);
cmd.SetGlobalVector("_ShadowBias", new Vector4(bias, normalBias, 0.0f, 0.0f));
cmd.SetGlobalVector("_LightDirection", new Vector4(lightDirection.x, lightDirection.y, lightDirection.z, 0.0f));
}
private void SetupShadowReceiverConstants(CommandBuffer cmd, VisibleLight shadowLight, ref ScriptableRenderContext context)
private void SetShaderKeywords(CommandBuffer cmd, ref LightData lightData)
Light light = shadowLight.light;
int cascadeCount = m_ShadowCasterCascadesCount;
for (int i = 0; i < kMaxCascades; ++i)
m_ShadowMatrices[i] = (cascadeCount >= i) ? m_ShadowSlices[i].shadowTransform : Matrix4x4.identity;
// We setup and additional a no-op WorldToShadow matrix in the last index
// because the ComputeCascadeIndex function in Shadows.hlsl can return an index
// out of bounds. (position not inside any cascade) and we want to avoid branching
Matrix4x4 noOpShadowMatrix = Matrix4x4.zero;
noOpShadowMatrix.m33 = (SystemInfo.usesReversedZBuffer) ? 1.0f : 0.0f;
m_ShadowMatrices[kMaxCascades] = noOpShadowMatrix;
float invShadowResolution = 1.0f / m_Asset.ShadowAtlasResolution;
float invHalfShadowResolution = 0.5f * invShadowResolution;
cmd.Clear();
cmd.SetGlobalTexture(m_ShadowMapRTID, m_ShadowMapRT);
cmd.SetGlobalMatrixArray(ShadowConstantBuffer._WorldToShadow, m_ShadowMatrices);
cmd.SetGlobalVector(ShadowConstantBuffer._ShadowData, new Vector4(light.shadowStrength, 0.0f, 0.0f, 0.0f));
cmd.SetGlobalVectorArray(ShadowConstantBuffer._DirShadowSplitSpheres, m_DirectionalShadowSplitDistances);
cmd.SetGlobalVector(ShadowConstantBuffer._DirShadowSplitSphereRadii, m_DirectionalShadowSplitRadii);
cmd.SetGlobalVector(ShadowConstantBuffer._ShadowOffset0, new Vector4(-invHalfShadowResolution, -invHalfShadowResolution, 0.0f, 0.0f));
cmd.SetGlobalVector(ShadowConstantBuffer._ShadowOffset1, new Vector4(invHalfShadowResolution, -invHalfShadowResolution, 0.0f, 0.0f));
cmd.SetGlobalVector(ShadowConstantBuffer._ShadowOffset2, new Vector4(-invHalfShadowResolution, invHalfShadowResolution, 0.0f, 0.0f));
cmd.SetGlobalVector(ShadowConstantBuffer._ShadowOffset3, new Vector4(invHalfShadowResolution, invHalfShadowResolution, 0.0f, 0.0f));
cmd.SetGlobalVector(ShadowConstantBuffer._ShadowmapSize, new Vector4(invShadowResolution, invShadowResolution, m_Asset.ShadowAtlasResolution, m_Asset.ShadowAtlasResolution));
context.ExecuteCommandBuffer(cmd);
}
List<VisibleLight> visibleLights = lightData.visibleLights;
int mainLightIndex = lightData.mainLightIndex;
private void SetShaderKeywords(CommandBuffer cmd, ref LightData lightData, List<VisibleLight> visibleLights)
{
int mainLightIndex = lightData.mainLightIndex;
//TIM: Not used in shader for V1 to reduce keywords
CoreUtils.SetKeyword(cmd, "_MAIN_LIGHT_DIRECTIONAL", mainLightIndex == -1 || visibleLights[mainLightIndex].lightType == LightType.Directional);
//TIM: Not used in shader for V1 to reduce keywords
CoreUtils.SetKeyword(cmd, "_MAIN_LIGHT_SPOT", mainLightIndex != -1 && visibleLights[mainLightIndex].lightType == LightType.Spot);
bool shadowsEnabled = m_ShadowPass.HasDirectionalShadowmap || m_ShadowPass.HasLocalLightsShadowmap;
CoreUtils.SetKeyword(cmd, "_SHADOWS_ENABLED", shadowsEnabled);
//TIM: Not used in shader for V1 to reduce keywords
CoreUtils.SetKeyword(cmd, "_SHADOWS_ENABLED", lightData.shadowMapSampleType != LightShadows.None);
// TODO: Currently we are shading same keyword for directional and local lights
// When we have ability to strip keywords we can use the one below instead
//CoreUtils.SetKeyword(cmd, "_SHADOWS_ENABLED", m_ShadowPass.HasDirectionalShadowmap);
//CoreUtils.SetKeyword(cmd, "_LOCAL_SHADOWS_ENABLED", m_ShadowPass.HasLocalLightsShadowmap);
//TIM: Not used in shader for V1 to reduce keywords
CoreUtils.SetKeyword(cmd, "_MAIN_LIGHT_COOKIE", mainLightIndex != -1 && LightweightUtils.IsSupportedCookieType(visibleLights[mainLightIndex].lightType) && visibleLights[mainLightIndex].light.cookie != null);

CoreUtils.SetKeyword(cmd, "SOFTPARTICLES_ON", m_RequireDepthTexture && m_Asset.RequireSoftParticles);
}
private void SetShadowCollectPassKeywords(CommandBuffer cmd, VisibleLight shadowLight, ref LightData lightData)
{
bool cascadeShadows = shadowLight.lightType == LightType.Directional && m_Asset.CascadeCount > 1;
CoreUtils.SetKeyword(cmd, "_SHADOWS_SOFT", lightData.shadowMapSampleType == LightShadows.Soft);
CoreUtils.SetKeyword(cmd, "_SHADOWS_CASCADE", cascadeShadows);
}
private bool RenderShadows(ref CullResults cullResults, ref VisibleLight shadowLight, int shadowLightIndex, ref ScriptableRenderContext context)
{
m_ShadowCasterCascadesCount = m_ShadowSettings.directionalLightCascadeCount;
if (shadowLight.lightType == LightType.Spot)
m_ShadowCasterCascadesCount = 1;
int shadowResolution = GetMaxTileResolutionInAtlas(m_ShadowSettings.shadowAtlasWidth, m_ShadowSettings.shadowAtlasHeight, m_ShadowCasterCascadesCount);
Bounds bounds;
if (!cullResults.GetShadowCasterBounds(shadowLightIndex, out bounds))
return false;
float shadowNearPlane = m_Asset.ShadowNearOffset;
Matrix4x4 view, proj;
var settings = new DrawShadowsSettings(cullResults, shadowLightIndex);
bool success = false;
var cmd = CommandBufferPool.Get("Prepare Shadowmap");
RenderTextureDescriptor shadowmapDescriptor = new RenderTextureDescriptor(m_ShadowSettings.shadowAtlasWidth,
m_ShadowSettings.shadowAtlasHeight, m_ShadowSettings.shadowmapTextureFormat, kShadowBufferBits);
shadowmapDescriptor.shadowSamplingMode = ShadowSamplingMode.CompareDepths;
m_ShadowMapRT = RenderTexture.GetTemporary(shadowmapDescriptor);
m_ShadowMapRT.filterMode = FilterMode.Bilinear;
m_ShadowMapRT.wrapMode = TextureWrapMode.Clamp;
// LightweightPipeline.SetRenderTarget is meant to be used with camera targets, not shadowmaps
CoreUtils.SetRenderTarget(cmd, m_ShadowMapRT, ClearFlag.Depth, CoreUtils.ConvertSRGBToActiveColorSpace(m_CurrCamera.backgroundColor));
if (shadowLight.lightType == LightType.Spot)
{
success = cullResults.ComputeSpotShadowMatricesAndCullingPrimitives(shadowLightIndex, out view, out proj,
out settings.splitData);
if (success)
{
SetupShadowCasterConstants(cmd, ref shadowLight, proj, shadowResolution);
SetupShadowSliceTransform(0, shadowResolution, proj, view);
RenderShadowSlice(cmd, ref context, 0, proj, view, settings);
}
}
else if (shadowLight.lightType == LightType.Directional)
{
for (int cascadeIdx = 0; cascadeIdx < m_ShadowCasterCascadesCount; ++cascadeIdx)
{
success = cullResults.ComputeDirectionalShadowMatricesAndCullingPrimitives(shadowLightIndex,
cascadeIdx, m_ShadowCasterCascadesCount, m_ShadowSettings.directionalLightCascades, shadowResolution, shadowNearPlane, out view, out proj,
out settings.splitData);
float cullingSphereRadius = settings.splitData.cullingSphere.w;
m_DirectionalShadowSplitDistances[cascadeIdx] = settings.splitData.cullingSphere;
m_DirectionalShadowSplitRadii[cascadeIdx] = cullingSphereRadius * cullingSphereRadius;
if (!success)
break;
SetupShadowCasterConstants(cmd, ref shadowLight, proj, shadowResolution);
SetupShadowSliceTransform(cascadeIdx, shadowResolution, proj, view);
RenderShadowSlice(cmd, ref context, cascadeIdx, proj, view, settings);
}
}
else
{
Debug.LogWarning("Only spot and directional shadow casters are supported in lightweight pipeline");
}
if (success)
SetupShadowReceiverConstants(cmd, shadowLight, ref context);
CommandBufferPool.Release(cmd);
return success;
}
private void SetupShadowSliceTransform(int cascadeIndex, int shadowResolution, Matrix4x4 proj, Matrix4x4 view)
{
if (cascadeIndex >= kMaxCascades)
{
Debug.LogError(String.Format("{0} is an invalid cascade index. Maximum of {1} cascades", cascadeIndex, kMaxCascades));
return;
}
int atlasX = (cascadeIndex % 2) * shadowResolution;
int atlasY = (cascadeIndex / 2) * shadowResolution;
float atlasWidth = (float)m_ShadowSettings.shadowAtlasWidth;
float atlasHeight = (float)m_ShadowSettings.shadowAtlasHeight;
// Currently CullResults ComputeDirectionalShadowMatricesAndCullingPrimitives doesn't
// apply z reversal to projection matrix. We need to do it manually here.
if (SystemInfo.usesReversedZBuffer)
{
proj.m20 = -proj.m20;
proj.m21 = -proj.m21;
proj.m22 = -proj.m22;
proj.m23 = -proj.m23;
}
Matrix4x4 worldToShadow = proj * view;
var textureScaleAndBias = Matrix4x4.identity;
textureScaleAndBias.m00 = 0.5f;
textureScaleAndBias.m11 = 0.5f;
textureScaleAndBias.m22 = 0.5f;
textureScaleAndBias.m03 = 0.5f;
textureScaleAndBias.m23 = 0.5f;
textureScaleAndBias.m13 = 0.5f;
// Apply texture scale and offset to save a MAD in shader.
worldToShadow = textureScaleAndBias * worldToShadow;
var cascadeAtlas = Matrix4x4.identity;
cascadeAtlas.m00 = (float)shadowResolution / atlasWidth;
cascadeAtlas.m11 = (float)shadowResolution / atlasHeight;
cascadeAtlas.m03 = (float)atlasX / atlasWidth;
cascadeAtlas.m13 = (float)atlasY / atlasHeight;
// Apply cascade scale and offset
worldToShadow = cascadeAtlas * worldToShadow;
m_ShadowSlices[cascadeIndex].atlasX = atlasX;
m_ShadowSlices[cascadeIndex].atlasY = atlasY;
m_ShadowSlices[cascadeIndex].shadowResolution = shadowResolution;
m_ShadowSlices[cascadeIndex].shadowTransform = worldToShadow;
}
private void RenderShadowSlice(CommandBuffer cmd, ref ScriptableRenderContext context, int cascadeIndex,
Matrix4x4 proj, Matrix4x4 view, DrawShadowsSettings settings)
{
cmd.SetViewport(new Rect(m_ShadowSlices[cascadeIndex].atlasX, m_ShadowSlices[cascadeIndex].atlasY,
m_ShadowSlices[cascadeIndex].shadowResolution, m_ShadowSlices[cascadeIndex].shadowResolution));
cmd.EnableScissorRect(new Rect(m_ShadowSlices[cascadeIndex].atlasX + 4, m_ShadowSlices[cascadeIndex].atlasY + 4,
m_ShadowSlices[cascadeIndex].shadowResolution - 8, m_ShadowSlices[cascadeIndex].shadowResolution - 8));
cmd.SetViewProjectionMatrices(view, proj);
context.ExecuteCommandBuffer(cmd);
cmd.Clear();
context.DrawShadows(ref settings);
cmd.DisableScissorRect();
context.ExecuteCommandBuffer(cmd);
cmd.Clear();
}
private int GetMaxTileResolutionInAtlas(int atlasWidth, int atlasHeight, int tileCount)
{
int resolution = Mathf.Min(atlasWidth, atlasHeight);
if (tileCount > Mathf.Log(resolution))
{
Debug.LogError(
String.Format(
"Cannot fit {0} tiles into current shadowmap atlas of size ({1}, {2}). ShadowMap Resolution set to zero.",
tileCount, atlasWidth, atlasHeight));
return 0;
}
int currentTileCount = atlasWidth / resolution * atlasHeight / resolution;
while (currentTileCount < tileCount)
{
resolution = resolution >> 1;
currentTileCount = atlasWidth / resolution * atlasHeight / resolution;
}
return resolution;
}
StartStereoRendering(ref context, renderingConfig);
LightweightUtils.StartStereoRendering(m_CurrCamera, ref context, renderingConfig);
CommandBuffer cmd = CommandBufferPool.Get("SetCameraRenderTarget");
bool intermediateTexture = LightweightUtils.HasFlag(renderingConfig, FrameRenderingConfiguration.IntermediateTexture);

private float GetScaledCameraWidth(Camera camera)
{
return (float) camera.pixelWidth * GetRenderScale();
return (float)camera.pixelWidth * GetRenderScale();
return (float) camera.pixelHeight * GetRenderScale();
return (float)camera.pixelHeight * GetRenderScale();
}
private RendererConfiguration GetRendererSettings(ref LightData lightData)

settings |= RendererConfiguration.PerObjectLightIndices8;
return settings;
}
private void SetRenderTarget(CommandBuffer cmd, RenderTargetIdentifier colorRT, ClearFlag clearFlag = ClearFlag.None)
{
int depthSlice = (m_IntermediateTextureArray) ? -1 : 0;
CoreUtils.SetRenderTarget(cmd, colorRT, clearFlag, CoreUtils.ConvertSRGBToActiveColorSpace(m_CurrCamera.backgroundColor), 0, CubemapFace.Unknown, depthSlice);
}
private void SetRenderTarget(CommandBuffer cmd, RenderTargetIdentifier colorRT, RenderTargetIdentifier depthRT, ClearFlag clearFlag = ClearFlag.None)
{
if (depthRT == BuiltinRenderTextureType.None || !m_DepthRenderBuffer)
SetRenderTarget(cmd, colorRT, clearFlag);
return;
if (m_UseComputeBuffer)
settings |= RendererConfiguration.ProvideLightIndices;
else
settings |= RendererConfiguration.PerObjectLightIndices8;
int depthSlice = (m_IntermediateTextureArray) ? -1 : 0;
CoreUtils.SetRenderTarget(cmd, colorRT, depthRT, clearFlag, CoreUtils.ConvertSRGBToActiveColorSpace(m_CurrCamera.backgroundColor), 0, CubemapFace.Unknown, depthSlice);
return settings;
}
private void RenderPostProcess(CommandBuffer cmd, RenderTargetIdentifier source, RenderTargetIdentifier dest, bool opaqueOnly)

m_CameraPostProcessLayer.Render(m_PostProcessRenderContext);
}
private int GetLightUnsortedIndex(int index)
private void SetRenderTarget(CommandBuffer cmd, RenderTargetIdentifier colorRT, ClearFlag clearFlag = ClearFlag.None)
{
int depthSlice = (m_IntermediateTextureArray) ? -1 : 0;
CoreUtils.SetRenderTarget(cmd, colorRT, clearFlag, CoreUtils.ConvertSRGBToActiveColorSpace(m_CurrCamera.backgroundColor), 0, CubemapFace.Unknown, depthSlice);
}
private void SetRenderTarget(CommandBuffer cmd, RenderTargetIdentifier colorRT, RenderTargetIdentifier depthRT, ClearFlag clearFlag = ClearFlag.None)
return (index < m_SortedLightIndexMap.Count) ? m_SortedLightIndexMap[index] : index;
if (depthRT == BuiltinRenderTextureType.None || !m_DepthRenderBuffer)
{
SetRenderTarget(cmd, colorRT, clearFlag);
return;
}
int depthSlice = (m_IntermediateTextureArray) ? -1 : 0;
CoreUtils.SetRenderTarget(cmd, colorRT, depthRT, clearFlag, CoreUtils.ConvertSRGBToActiveColorSpace(m_CurrCamera.backgroundColor), 0, CubemapFace.Unknown, depthSlice);
}
private void Blit(CommandBuffer cmd, FrameRenderingConfiguration renderingConfig, RenderTargetIdentifier sourceRT, RenderTargetIdentifier destRT, Material material = null)

cmd.CopyTexture(sourceRT, destRT);
else
cmd.Blit(sourceRT, destRT, copyMaterial);
}
private void StartStereoRendering(ref ScriptableRenderContext context, FrameRenderingConfiguration renderingConfiguration)
{
if (LightweightUtils.HasFlag(renderingConfiguration, FrameRenderingConfiguration.Stereo))
context.StartMultiEye(m_CurrCamera);
}
private void StopStereoRendering(ref ScriptableRenderContext context, FrameRenderingConfiguration renderingConfiguration)
{
if (LightweightUtils.HasFlag(renderingConfiguration, FrameRenderingConfiguration.Stereo))
context.StopMultiEye(m_CurrCamera);
}
}
}

92
ScriptableRenderPipeline/LightweightPipeline/LWRP/LightweightPipelineUtils.cs


}
}
public class LightComparer : IComparer<VisibleLight>
{
public Camera CurrCamera { get; set; }
public int Compare(VisibleLight lhs, VisibleLight rhs)
{
Light lhsLight = lhs.light;
Light rhsLight = rhs.light;
// Particle Lights have the Light reference set to null
// They are at the end of the priority
if (lhsLight == null) return 1;
if (rhsLight == null) return -1;
// Prioritize lights marked as important
if (lhsLight.renderMode != rhsLight.renderMode)
{
if (lhsLight.renderMode == LightRenderMode.ForcePixel) return -1;
if (rhsLight.renderMode == LightRenderMode.ForcePixel) return 1;
}
// Prioritize Directional Lights
if (lhs.lightType != rhs.lightType)
{
if (lhs.lightType == LightType.Directional) return -1;
if (rhs.lightType == LightType.Directional) return 1;
}
// Prioritize Shadows Lights Soft > Hard > None
if (lhsLight.shadows != rhsLight.shadows)
return (int)rhsLight.shadows - (int)lhsLight.shadows;
// Prioritize lights with cookies
if (lhsLight.cookie != rhsLight.cookie)
return (lhsLight.cookie != null) ? -1 : 1;
// If directional sort by intensity
if (lhs.lightType == LightType.Directional)
{
return (int)(rhsLight.intensity * 100.0f) - (int)(lhsLight.intensity * 100.0f);
}
// Punctual lights are sorted per-object by the engine based on distance to object center + luminance
// Here we sort globally the light list per camera distance to fit the closest lights in the global light buffer
// Check MAX_VISIBLE_LIGHTS in the LightweightLighting.cginc to see the max global buffer list size
int lhsDistance = (int)(SquaredDistanceToCamera(lhsLight.transform.position) * 100.0f);
int rhsDistance = (int)(SquaredDistanceToCamera(rhsLight.transform.position) * 100.0f);
int result = lhsDistance - rhsDistance;
return result;
}
public float SquaredDistanceToCamera(Vector3 lightPos)
{
Vector3 lightCameraVector = lightPos - CurrCamera.transform.position;
return Vector3.Dot(lightCameraVector, lightCameraVector);
}
}
public class LightEqualityComparer : IEqualityComparer<VisibleLight>
{
public bool Equals(VisibleLight x, VisibleLight y)
{
if (x.light == null && y.light == null)
return true;
if (x.light == null || y.light == null)
return false;
return x.light.GetInstanceID() == y.light.GetInstanceID();
}
public int GetHashCode(VisibleLight obj)
{
if (obj.light == null) // Particle light weirdness
return obj.GetHashCode();
return obj.light.GetInstanceID();
}
}
[Flags]
public enum FrameRenderingConfiguration
{

public static class LightweightUtils
{
public static void StartStereoRendering(Camera camera, ref ScriptableRenderContext context, FrameRenderingConfiguration renderingConfiguration)
{
if (HasFlag(renderingConfiguration, FrameRenderingConfiguration.Stereo))
context.StartMultiEye(camera);
}
public static void StopStereoRendering(Camera camera, ref ScriptableRenderContext context, FrameRenderingConfiguration renderingConfiguration)
{
if (HasFlag(renderingConfiguration, FrameRenderingConfiguration.Stereo))
context.StopMultiEye(camera);
}
public static void GetLightCookieMatrix(VisibleLight light, out Matrix4x4 cookieMatrix)
{
cookieMatrix = Matrix4x4.Inverse(light.localToWorld);

14
ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/Input.hlsl


#define MAX_VISIBLE_LIGHTS 16
// Must match check of use compute buffer in LightweightPipeline.cs
// GLES check here because of WebGL 1.0 support
// TODO: check performance of using StructuredBuffer on mobile as well
#if defined(SHADER_API_MOBILE) || defined(SHADER_API_GLES)
#define USE_STRUCTURED_BUFFER_FOR_LIGHT_DATA 0
#else
#define USE_STRUCTURED_BUFFER_FOR_LIGHT_DATA 1
#endif
struct InputData
{
float3 positionWS;

CBUFFER_START(_PerCamera)
float4 _MainLightPosition;
half4 _MainLightColor;
half4 _MainLightDistanceAttenuation;
half4 _MainLightSpotDir;
half4 _MainLightSpotAttenuation;
float4x4 _WorldToLight;
half4 _AdditionalLightCount;

float4 _ScaledScreenParams;
CBUFFER_END
StructuredBuffer<int> _LightIndexBuffer;
#define UNITY_MATRIX_M unity_ObjectToWorld
#define UNITY_MATRIX_I_M unity_WorldToObject

2
ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/InputSurfaceSimple.hlsl


{
half4 specularGloss = half4(0.0h, 0.0h, 0.0h, 1.0h);
#ifdef _SPECGLOSSMAP
specularGloss = SAMPLE_TEXTURE2D(TEXTURE2D_PARAM(specGlossMap, sampler_specGlossMap), uv);
specularGloss = SAMPLE_TEXTURE2D(specGlossMap, sampler_specGlossMap, uv);
#elif defined(_SPECULAR_COLOR)
specularGloss = specColor;
#endif

74
ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/Lighting.hlsl


#include "Core.hlsl"
#include "Shadows.hlsl"
#ifdef NO_ADDITIONAL_LIGHTS
#undef _ADDITIONAL_LIGHTS
#endif
// If lightmap is not defined than we evaluate GI (ambient + probes) from SH
// We might do it fully or partially in vertex to save shader ALU
#if !defined(LIGHTMAP_ON)

// Abstraction over Light shading data.
struct Light
{
int index;
half3 direction;
half3 color;
half attenuation;

// We use a shared distance attenuation for additional directional and puctual lights
// for directional lights attenuation will be 1
half quadFalloff = distanceAttenuation.x;
half denom = distanceSqr * quadFalloff + 1.0;
half lightAtten = 1.0 / denom;
half denom = distanceSqr * quadFalloff + 1.0h;
half lightAtten = 1.0h / denom;
// We need to smoothly fade attenuation to light range. We start fading linearly at 80% of light range
// Therefore:

{
half4 directionAndAttenuation = GetLightDirectionAndAttenuation(lightInput, positionWS);
// Cookies are only computed for main light
directionAndAttenuation.w *= CookieAttenuation(positionWS);
// Cookies disabled for now due to amount of shader variants
//directionAndAttenuation.w *= CookieAttenuation(positionWS);
return directionAndAttenuation;
}

///////////////////////////////////////////////////////////////////////////////
Light GetMainLight(float3 positionWS)
Light GetMainLight()
LightInput lightInput;
lightInput.position = _MainLightPosition;
lightInput.color = _MainLightColor.rgb;
lightInput.distanceAttenuation = _MainLightDistanceAttenuation;
lightInput.spotDirection = _MainLightSpotDir;
lightInput.spotAttenuation = _MainLightSpotAttenuation;
half4 directionAndRealtimeAttenuation = GetMainLightDirectionAndAttenuation(lightInput, positionWS);
light.direction = directionAndRealtimeAttenuation.xyz;
light.attenuation = directionAndRealtimeAttenuation.w;
light.subtractiveModeAttenuation = lightInput.distanceAttenuation.w;
light.color = lightInput.color;
light.index = 0;
light.direction = _MainLightPosition.xyz;
light.attenuation = 1.0;
light.subtractiveModeAttenuation = _MainLightPosition.w;
light.color = _MainLightColor.rgb;
Light GetLight(int i, float3 positionWS)
Light GetLight(half i, float3 positionWS)
half4 indices = (i < 4) ? unity_4LightIndices0 : unity_4LightIndices1;
int index = (i < 4) ? i : i - 4;
int lightIndex = indices[index];
#if USE_STRUCTURED_BUFFER_FOR_LIGHT_DATA
int lightIndex = _LightIndexBuffer[unity_LightIndicesOffsetAndCount.x + i];
#else
// The following code is more optimal than indexing unity_4LightIndices0.
// Conditional moves are branch free even on mali-400
half i_rem = (i < 2.0h) ? i : i - 2.0h;
half2 lightIndex2 = (i < 2.0h) ? unity_4LightIndices0.xy : unity_4LightIndices0.zw;
int lightIndex = (i_rem < 1.0h) ? lightIndex2.x : lightIndex2.y;
#endif
// The following code will turn into a branching madhouse on platforms that don't support
// dynamic indexing. Ideally we need to configure light data at a cluster of
// objects granularity level. We will only be able to do that when scriptable culling kicks in.
// TODO: Use StructuredBuffer on PC/Console and profile access speed on mobile that support it.
lightInput.position = _AdditionalLightPosition[lightIndex];
lightInput.color = _AdditionalLightColor[lightIndex].rgb;
lightInput.distanceAttenuation = _AdditionalLightDistanceAttenuation[lightIndex];

half4 directionAndRealtimeAttenuation = GetLightDirectionAndAttenuation(lightInput, positionWS);
Light light;
light.index = lightIndex;
light.direction = directionAndRealtimeAttenuation.xyz;
light.attenuation = directionAndRealtimeAttenuation.w;
light.subtractiveModeAttenuation = lightInput.distanceAttenuation.w;

half GetPixelLightCount()
{
// TODO: we need to expose in SRP api an ability for the pipeline cap the amount of lights
// in the culling. This way we could do the loop branch with an uniform
// This would be helpful to support baking exceeding lights in SH as well
return min(_AdditionalLightCount.x, unity_LightIndicesOffsetAndCount.y);
}

// 1) Gives good estimate of illumination as if light would've been shadowed during the bake.
// We only subtract the main direction light. This is accounted in the contribution term below.
half shadowStrength = GetShadowStrength();
half contributionTerm = saturate(dot(mainLight.direction, normalWS)) * (1.0 - _MainLightPosition.w);
half shadowStrength = _ShadowData.x;
half contributionTerm = saturate(dot(mainLight.direction, normalWS));
half3 lambert = mainLight.color * contributionTerm;
half3 estimatedLightContributionMaskedByInverseOfShadow = lambert * (1.0 - mainLight.attenuation);
half3 subtractedLightmap = bakedGI - estimatedLightContributionMaskedByInverseOfShadow;

BRDFData brdfData;
InitializeBRDFData(albedo, metallic, specular, smoothness, alpha, brdfData);
Light mainLight = GetMainLight(inputData.positionWS);
mainLight.attenuation *= RealtimeShadowAttenuation(inputData.shadowCoord);
Light mainLight = GetMainLight();
mainLight.attenuation = MainLightRealtimeShadowAttenuation(inputData.shadowCoord);
MixRealtimeAndBakedGI(mainLight, inputData.normalWS, inputData.bakedGI, half4(0, 0, 0, 0));
half3 color = GlobalIllumination(brdfData, inputData.bakedGI, occlusion, inputData.normalWS, inputData.viewDirectionWS);

for (int i = 0; i < pixelLightCount; ++i)
{
Light light = GetLight(i, inputData.positionWS);
light.attenuation *= LocalLightRealtimeShadowAttenuation(light.index, inputData.positionWS);
color += LightingPhysicallyBased(brdfData, light, inputData.normalWS, inputData.viewDirectionWS);
}
#endif

half4 LightweightFragmentBlinnPhong(InputData inputData, half3 diffuse, half4 specularGloss, half shininess, half3 emission, half alpha)
{
Light mainLight = GetMainLight(inputData.positionWS);
mainLight.attenuation *= RealtimeShadowAttenuation(inputData.shadowCoord);
Light mainLight = GetMainLight();
mainLight.attenuation = MainLightRealtimeShadowAttenuation(inputData.shadowCoord);
MixRealtimeAndBakedGI(mainLight, inputData.normalWS, inputData.bakedGI, half4(0, 0, 0, 0));
half3 attenuatedLightColor = mainLight.color * mainLight.attenuation;

for (int i = 0; i < pixelLightCount; ++i)
{
Light light = GetLight(i, inputData.positionWS);
light.attenuation *= LocalLightRealtimeShadowAttenuation(light.index, inputData.positionWS);
half3 attenuatedLightColor = light.color * light.attenuation;
diffuseColor += LightingLambert(attenuatedLightColor, light.direction, inputData.normalWS);
specularColor += LightingSpecular(attenuatedLightColor, light.direction, inputData.normalWS, inputData.viewDirectionWS, specularGloss, shininess);

half3 fullDiffuse = diffuseColor + inputData.vertexLighting;
half3 finalColor = fullDiffuse * diffuse + emission;
#if defined(_SPECGLOSSMAP) || defined(_SPECULAR_COLOR)
finalColor += specularColor;
#endif

285
ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/LightweightPassLit.hlsl


#ifndef LIGHTWEIGHT_PASS_LIT_INCLUDED
#define LIGHTWEIGHT_PASS_LIT_INCLUDED
#include "LWRP/ShaderLibrary/Lighting.hlsl"
struct LightweightVertexInput
{
float4 vertex : POSITION;
float3 normal : NORMAL;
float4 tangent : TANGENT;
float2 texcoord : TEXCOORD0;
float2 lightmapUV : TEXCOORD1;
UNITY_VERTEX_INPUT_INSTANCE_ID
};
struct LightweightVertexOutput
{
float2 uv : TEXCOORD0;
DECLARE_LIGHTMAP_OR_SH(lightmapUV, vertexSH, 1);
float3 posWS : TEXCOORD2;
#ifdef _NORMALMAP
half4 normal : TEXCOORD3; // xyz: normal, w: viewDir.x
half4 tangent : TEXCOORD4; // xyz: tangent, w: viewDir.y
half4 binormal : TEXCOORD5; // xyz: binormal, w: viewDir.z
#else
half3 normal : TEXCOORD3;
half3 viewDir : TEXCOORD4;
#endif
half4 fogFactorAndVertexLight : TEXCOORD6; // x: fogFactor, yzw: vertex light
#ifdef _SHADOWS_ENABLED
float4 shadowCoord : TEXCOORD7;
#endif
float4 clipPos : SV_POSITION;
UNITY_VERTEX_INPUT_INSTANCE_ID
UNITY_VERTEX_OUTPUT_STEREO
};
void InitializeInputData(LightweightVertexOutput IN, half3 normalTS, out InputData inputData)
{
inputData = (InputData)0;
inputData.positionWS = IN.posWS;
#ifdef _NORMALMAP
half3 viewDir = half3(IN.normal.w, IN.tangent.w, IN.binormal.w);
inputData.normalWS = TangentToWorldNormal(normalTS, IN.tangent.xyz, IN.binormal.xyz, IN.normal.xyz);
#else
half3 viewDir = IN.viewDir;
inputData.normalWS = FragmentNormalWS(IN.normal);
#endif
inputData.viewDirectionWS = FragmentViewDirWS(viewDir);
#ifdef _SHADOWS_ENABLED
inputData.shadowCoord = IN.shadowCoord;
#else
inputData.shadowCoord = float4(0, 0, 0, 0);
#endif
inputData.fogCoord = IN.fogFactorAndVertexLight.x;
inputData.vertexLighting = IN.fogFactorAndVertexLight.yzw;
inputData.bakedGI = SAMPLE_GI(IN.lightmapUV, IN.vertexSH, inputData.normalWS);
}
///////////////////////////////////////////////////////////////////////////////
// Vertex and Fragment functions //
///////////////////////////////////////////////////////////////////////////////
// Used in Standard (Physically Based) shader
LightweightVertexOutput LitPassVertex(LightweightVertexInput v)
{
LightweightVertexOutput o = (LightweightVertexOutput)0;
UNITY_SETUP_INSTANCE_ID(v);
UNITY_TRANSFER_INSTANCE_ID(v, o);
UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(o);
o.uv = TRANSFORM_TEX(v.texcoord, _MainTex);
float3 posWS = TransformObjectToWorld(v.vertex.xyz);
o.clipPos = TransformWorldToHClip(posWS);
half3 viewDir = VertexViewDirWS(GetCameraPositionWS() - posWS);
#ifdef _NORMALMAP
o.normal.w = viewDir.x;
o.tangent.w = viewDir.y;
o.binormal.w = viewDir.z;
#else
o.viewDir = viewDir;
#endif
// initializes o.normal and if _NORMALMAP also o.tangent and o.binormal
OUTPUT_NORMAL(v, o);
// We either sample GI from lightmap or SH.
// Lightmap UV and vertex SH coefficients use the same interpolator ("float2 lightmapUV" for lightmap or "half3 vertexSH" for SH)
// see DECLARE_LIGHTMAP_OR_SH macro.
// The following funcions initialize the correct variable with correct data
OUTPUT_LIGHTMAP_UV(v.lightmapUV, unity_LightmapST, o.lightmapUV);
OUTPUT_SH(o.normal.xyz, o.vertexSH);
half3 vertexLight = VertexLighting(posWS, o.normal.xyz);
half fogFactor = ComputeFogFactor(o.clipPos.z);
o.fogFactorAndVertexLight = half4(fogFactor, vertexLight);
#ifdef _SHADOWS_ENABLED
#if SHADOWS_SCREEN
o.shadowCoord = ComputeShadowCoord(o.clipPos);
#else
o.shadowCoord = TransformWorldToShadowCoord(posWS);
#endif
#endif
o.posWS = posWS;
return o;
}
// Used in Standard (Physically Based) shader
half4 LitPassFragment(LightweightVertexOutput IN) : SV_Target
{
UNITY_SETUP_INSTANCE_ID(IN);
SurfaceData surfaceData;
InitializeStandardLitSurfaceData(IN.uv, surfaceData);
InputData inputData;
InitializeInputData(IN, surfaceData.normalTS, inputData);
half4 color = LightweightFragmentPBR(inputData, surfaceData.albedo, surfaceData.metallic, surfaceData.specular, surfaceData.smoothness, surfaceData.occlusion, surfaceData.emission, surfaceData.alpha);
ApplyFog(color.rgb, inputData.fogCoord);
return color;
}
#endif
#ifndef LIGHTWEIGHT_PASS_LIT_INCLUDED
#define LIGHTWEIGHT_PASS_LIT_INCLUDED
#include "LWRP/ShaderLibrary/Lighting.hlsl"
struct LightweightVertexInput
{
float4 vertex : POSITION;
float3 normal : NORMAL;
float4 tangent : TANGENT;
float2 texcoord : TEXCOORD0;
float2 lightmapUV : TEXCOORD1;
UNITY_VERTEX_INPUT_INSTANCE_ID
};
struct LightweightVertexOutput
{
float2 uv : TEXCOORD0;
DECLARE_LIGHTMAP_OR_SH(lightmapUV, vertexSH, 1);
#ifdef _ADDITIONAL_LIGHTS
float3 posWS : TEXCOORD2;
#endif
#ifdef _NORMALMAP
half4 normal : TEXCOORD3; // xyz: normal, w: viewDir.x
half4 tangent : TEXCOORD4; // xyz: tangent, w: viewDir.y
half4 binormal : TEXCOORD5; // xyz: binormal, w: viewDir.z
#else
half3 normal : TEXCOORD3;
half3 viewDir : TEXCOORD4;
#endif
half4 fogFactorAndVertexLight : TEXCOORD6; // x: fogFactor, yzw: vertex light
#ifdef _SHADOWS_ENABLED
float4 shadowCoord : TEXCOORD7;
#endif
float4 clipPos : SV_POSITION;
UNITY_VERTEX_INPUT_INSTANCE_ID
UNITY_VERTEX_OUTPUT_STEREO
};
void InitializeInputData(LightweightVertexOutput IN, half3 normalTS, out InputData inputData)
{
inputData = (InputData)0;
#ifdef _ADDITIONAL_LIGHTS
inputData.positionWS = IN.posWS;
#endif
#ifdef _NORMALMAP
half3 viewDir = half3(IN.normal.w, IN.tangent.w, IN.binormal.w);
inputData.normalWS = TangentToWorldNormal(normalTS, IN.tangent.xyz, IN.binormal.xyz, IN.normal.xyz);
#else
half3 viewDir = IN.viewDir;
inputData.normalWS = FragmentNormalWS(IN.normal);
#endif
inputData.viewDirectionWS = FragmentViewDirWS(viewDir);
#ifdef _SHADOWS_ENABLED
inputData.shadowCoord = IN.shadowCoord;
#else
inputData.shadowCoord = float4(0, 0, 0, 0);
#endif
inputData.fogCoord = IN.fogFactorAndVertexLight.x;
inputData.vertexLighting = IN.fogFactorAndVertexLight.yzw;
inputData.bakedGI = SAMPLE_GI(IN.lightmapUV, IN.vertexSH, inputData.normalWS);
}
///////////////////////////////////////////////////////////////////////////////
// Vertex and Fragment functions //
///////////////////////////////////////////////////////////////////////////////
// Used in Standard (Physically Based) shader
LightweightVertexOutput LitPassVertex(LightweightVertexInput v)
{
LightweightVertexOutput o = (LightweightVertexOutput)0;
UNITY_SETUP_INSTANCE_ID(v);
UNITY_TRANSFER_INSTANCE_ID(v, o);
UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(o);
o.uv = TRANSFORM_TEX(v.texcoord, _MainTex);
float3 posWS = TransformObjectToWorld(v.vertex.xyz);
o.clipPos = TransformWorldToHClip(posWS);
half3 viewDir = VertexViewDirWS(GetCameraPositionWS() - posWS);
#ifdef _NORMALMAP
o.normal.w = viewDir.x;
o.tangent.w = viewDir.y;
o.binormal.w = viewDir.z;
#else
o.viewDir = viewDir;
#endif
// initializes o.normal and if _NORMALMAP also o.tangent and o.binormal
OUTPUT_NORMAL(v, o);
// We either sample GI from lightmap or SH.
// Lightmap UV and vertex SH coefficients use the same interpolator ("float2 lightmapUV" for lightmap or "half3 vertexSH" for SH)
// see DECLARE_LIGHTMAP_OR_SH macro.
// The following funcions initialize the correct variable with correct data
OUTPUT_LIGHTMAP_UV(v.lightmapUV, unity_LightmapST, o.lightmapUV);
OUTPUT_SH(o.normal.xyz, o.vertexSH);
half3 vertexLight = VertexLighting(posWS, o.normal.xyz);
half fogFactor = ComputeFogFactor(o.clipPos.z);
o.fogFactorAndVertexLight = half4(fogFactor, vertexLight);
#ifdef _SHADOWS_ENABLED
#if SHADOWS_SCREEN
o.shadowCoord = ComputeShadowCoord(o.clipPos);
#else
o.shadowCoord = TransformWorldToShadowCoord(posWS);
#endif
#endif
#ifdef _ADDITIONAL_LIGHTS
o.posWS = posWS;
#endif
return o;
}
// Used in Standard (Physically Based) shader
half4 LitPassFragment(LightweightVertexOutput IN) : SV_Target
{
UNITY_SETUP_INSTANCE_ID(IN);
SurfaceData surfaceData;
InitializeStandardLitSurfaceData(IN.uv, surfaceData);
InputData inputData;
InitializeInputData(IN, surfaceData.normalTS, inputData);
half4 color = LightweightFragmentPBR(inputData, surfaceData.albedo, surfaceData.metallic, surfaceData.specular, surfaceData.smoothness, surfaceData.occlusion, surfaceData.emission, surfaceData.alpha);
ApplyFog(color.rgb, inputData.fogCoord);
return color;
}
#endif

292
ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/LightweightPassLitSimple.hlsl


#ifndef LIGHTWEIGHT_PASS_LIT_INCLUDED
#define LIGHTWEIGHT_PASS_LIT_INCLUDED
#include "LWRP/ShaderLibrary/Lighting.hlsl"
struct LightweightVertexInput
{
float4 vertex : POSITION;
float3 normal : NORMAL;
float4 tangent : TANGENT;
float2 texcoord : TEXCOORD0;
float2 lightmapUV : TEXCOORD1;
UNITY_VERTEX_INPUT_INSTANCE_ID
};
struct LightweightVertexOutput
{
float2 uv : TEXCOORD0;
DECLARE_LIGHTMAP_OR_SH(lightmapUV, vertexSH, 1);
float4 posWSShininess : TEXCOORD2; // xyz: posWS, w: Shininess * 128
#ifdef _NORMALMAP
half4 normal : TEXCOORD3; // xyz: normal, w: viewDir.x
half4 tangent : TEXCOORD4; // xyz: tangent, w: viewDir.y
half4 binormal : TEXCOORD5; // xyz: binormal, w: viewDir.z
#else
half3 normal : TEXCOORD3;
half3 viewDir : TEXCOORD4;
#endif
half4 fogFactorAndVertexLight : TEXCOORD6; // x: fogFactor, yzw: vertex light
#ifdef _SHADOWS_ENABLED
float4 shadowCoord : TEXCOORD7;
#endif
float4 clipPos : SV_POSITION;
UNITY_VERTEX_INPUT_INSTANCE_ID
UNITY_VERTEX_OUTPUT_STEREO
};
void InitializeInputData(LightweightVertexOutput IN, half3 normalTS, out InputData inputData)
{
inputData.positionWS = IN.posWSShininess.xyz;
#ifdef _NORMALMAP
half3 viewDir = half3(IN.normal.w, IN.tangent.w, IN.binormal.w);
inputData.normalWS = TangentToWorldNormal(normalTS, IN.tangent.xyz, IN.binormal.xyz, IN.normal.xyz);
#else
half3 viewDir = IN.viewDir;
inputData.normalWS = FragmentNormalWS(IN.normal);
#endif
inputData.viewDirectionWS = FragmentViewDirWS(viewDir);
#ifdef _SHADOWS_ENABLED
inputData.shadowCoord = IN.shadowCoord;
#else
inputData.shadowCoord = float4(0, 0, 0, 0);
#endif
inputData.fogCoord = IN.fogFactorAndVertexLight.x;
inputData.vertexLighting = IN.fogFactorAndVertexLight.yzw;
inputData.bakedGI = SAMPLE_GI(IN.lightmapUV, IN.vertexSH, inputData.normalWS);
}
///////////////////////////////////////////////////////////////////////////////
// Vertex and Fragment functions //
///////////////////////////////////////////////////////////////////////////////
// Used in Standard (Simple Lighting) shader
LightweightVertexOutput LitPassVertexSimple(LightweightVertexInput v)
{
LightweightVertexOutput o = (LightweightVertexOutput)0;
UNITY_SETUP_INSTANCE_ID(v);
UNITY_TRANSFER_INSTANCE_ID(v, o);
UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(o);
o.uv = TRANSFORM_TEX(v.texcoord, _MainTex);
o.posWSShininess.xyz = TransformObjectToWorld(v.vertex.xyz);
o.posWSShininess.w = _Shininess * 128.0;
o.clipPos = TransformWorldToHClip(o.posWSShininess.xyz);
half3 viewDir = VertexViewDirWS(GetCameraPositionWS() - o.posWSShininess.xyz);
#ifdef _NORMALMAP
o.normal.w = viewDir.x;
o.tangent.w = viewDir.y;
o.binormal.w = viewDir.z;
#else
o.viewDir = viewDir;
#endif
// initializes o.normal and if _NORMALMAP also o.tangent and o.binormal
OUTPUT_NORMAL(v, o);
// We either sample GI from lightmap or SH.
// Lightmap UV and vertex SH coefficients use the same interpolator ("float2 lightmapUV" for lightmap or "half3 vertexSH" for SH)
// see DECLARE_LIGHTMAP_OR_SH macro.
// The following funcions initialize the correct variable with correct data
OUTPUT_LIGHTMAP_UV(v.lightmapUV, unity_LightmapST, o.lightmapUV);
OUTPUT_SH(o.normal.xyz, o.vertexSH);
half3 vertexLight = VertexLighting(o.posWSShininess.xyz, o.normal.xyz);
half fogFactor = ComputeFogFactor(o.clipPos.z);
o.fogFactorAndVertexLight = half4(fogFactor, vertexLight);
#ifdef _SHADOWS_ENABLED
#if SHADOWS_SCREEN
o.shadowCoord = ComputeShadowCoord(o.clipPos);
#else
o.shadowCoord = TransformWorldToShadowCoord(o.posWSShininess.xyz);
#endif
#endif
return o;
}
// Used for StandardSimpleLighting shader
half4 LitPassFragmentSimple(LightweightVertexOutput IN) : SV_Target
{
UNITY_SETUP_INSTANCE_ID(IN);
float2 uv = IN.uv;
half4 diffuseAlpha = SampleAlbedoAlpha(uv, TEXTURE2D_PARAM(_MainTex, sampler_MainTex));
half3 diffuse = diffuseAlpha.rgb * _Color.rgb;
half alpha = diffuseAlpha.a * _Color.a;
AlphaDiscard(alpha, _Cutoff);
#ifdef _ALPHAPREMULTIPLY_ON
diffuse *= alpha;
#endif
half3 normalTS = SampleNormal(uv, TEXTURE2D_PARAM(_BumpMap, sampler_BumpMap));
half3 emission = SampleEmission(uv, _EmissionColor.rgb, TEXTURE2D_PARAM(_EmissionMap, sampler_EmissionMap));
half4 specularGloss = SampleSpecularGloss(uv, diffuseAlpha.a, _SpecColor, TEXTURE2D_PARAM(_SpecGlossMap, sampler_SpecGlossMap));
half shininess = IN.posWSShininess.w;
InputData inputData;
InitializeInputData(IN, normalTS, inputData);
return LightweightFragmentBlinnPhong(inputData, diffuse, specularGloss, shininess, emission, alpha);
};
#endif
#ifndef LIGHTWEIGHT_PASS_LIT_INCLUDED
#define LIGHTWEIGHT_PASS_LIT_INCLUDED
#include "LWRP/ShaderLibrary/Lighting.hlsl"
struct LightweightVertexInput
{
float4 vertex : POSITION;
float3 normal : NORMAL;
float4 tangent : TANGENT;
float2 texcoord : TEXCOORD0;
float2 lightmapUV : TEXCOORD1;
UNITY_VERTEX_INPUT_INSTANCE_ID
};
struct LightweightVertexOutput
{
float2 uv : TEXCOORD0;
DECLARE_LIGHTMAP_OR_SH(lightmapUV, vertexSH, 1);
float4 posWSShininess : TEXCOORD2; // xyz: posWS, w: Shininess * 128
#ifdef _NORMALMAP
half4 normal : TEXCOORD3; // xyz: normal, w: viewDir.x
half4 tangent : TEXCOORD4; // xyz: tangent, w: viewDir.y
half4 binormal : TEXCOORD5; // xyz: binormal, w: viewDir.z
#else
half3 normal : TEXCOORD3;
half3 viewDir : TEXCOORD4;
#endif
half4 fogFactorAndVertexLight : TEXCOORD6; // x: fogFactor, yzw: vertex light
#ifdef _SHADOWS_ENABLED
float4 shadowCoord : TEXCOORD7;
#endif
float4 clipPos : SV_POSITION;
UNITY_VERTEX_INPUT_INSTANCE_ID
UNITY_VERTEX_OUTPUT_STEREO
};
void InitializeInputData(LightweightVertexOutput IN, half3 normalTS, out InputData inputData)
{
inputData.positionWS = IN.posWSShininess.xyz;
#ifdef _NORMALMAP
half3 viewDir = half3(IN.normal.w, IN.tangent.w, IN.binormal.w);
inputData.normalWS = TangentToWorldNormal(normalTS, IN.tangent.xyz, IN.binormal.xyz, IN.normal.xyz);
#else
half3 viewDir = IN.viewDir;
inputData.normalWS = FragmentNormalWS(IN.normal);
#endif
inputData.viewDirectionWS = FragmentViewDirWS(viewDir);
#ifdef _SHADOWS_ENABLED
inputData.shadowCoord = IN.shadowCoord;
#else
inputData.shadowCoord = float4(0, 0, 0, 0);
#endif
inputData.fogCoord = IN.fogFactorAndVertexLight.x;
inputData.vertexLighting = IN.fogFactorAndVertexLight.yzw;
inputData.bakedGI = SAMPLE_GI(IN.lightmapUV, IN.vertexSH, inputData.normalWS);
}
///////////////////////////////////////////////////////////////////////////////
// Vertex and Fragment functions //
///////////////////////////////////////////////////////////////////////////////
// Used in Standard (Simple Lighting) shader
LightweightVertexOutput LitPassVertexSimple(LightweightVertexInput v)
{
LightweightVertexOutput o = (LightweightVertexOutput)0;
UNITY_SETUP_INSTANCE_ID(v);
UNITY_TRANSFER_INSTANCE_ID(v, o);
UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(o);
o.uv = TRANSFORM_TEX(v.texcoord, _MainTex);
o.posWSShininess.xyz = TransformObjectToWorld(v.vertex.xyz);
o.posWSShininess.w = _Shininess * 128.0;
o.clipPos = TransformWorldToHClip(o.posWSShininess.xyz);
half3 viewDir = VertexViewDirWS(GetCameraPositionWS() - o.posWSShininess.xyz);
#ifdef _NORMALMAP
o.normal.w = viewDir.x;
o.tangent.w = viewDir.y;
o.binormal.w = viewDir.z;
#else
o.viewDir = viewDir;
#endif
// initializes o.normal and if _NORMALMAP also o.tangent and o.binormal
OUTPUT_NORMAL(v, o);
// We either sample GI from lightmap or SH.
// Lightmap UV and vertex SH coefficients use the same interpolator ("float2 lightmapUV" for lightmap or "half3 vertexSH" for SH)
// see DECLARE_LIGHTMAP_OR_SH macro.
// The following funcions initialize the correct variable with correct data
OUTPUT_LIGHTMAP_UV(v.lightmapUV, unity_LightmapST, o.lightmapUV);
OUTPUT_SH(o.normal.xyz, o.vertexSH);
half3 vertexLight = VertexLighting(o.posWSShininess.xyz, o.normal.xyz);
half fogFactor = ComputeFogFactor(o.clipPos.z);
o.fogFactorAndVertexLight = half4(fogFactor, vertexLight);
#ifdef _SHADOWS_ENABLED
#if SHADOWS_SCREEN
o.shadowCoord = ComputeShadowCoord(o.clipPos);
#else
o.shadowCoord = TransformWorldToShadowCoord(o.posWSShininess.xyz);
#endif
#endif
return o;
}
// Used for StandardSimpleLighting shader
half4 LitPassFragmentSimple(LightweightVertexOutput IN) : SV_Target
{
UNITY_SETUP_INSTANCE_ID(IN);
float2 uv = IN.uv;
half4 diffuseAlpha = SampleAlbedoAlpha(uv, TEXTURE2D_PARAM(_MainTex, sampler_MainTex));
half3 diffuse = diffuseAlpha.rgb * _Color.rgb;
half alpha = diffuseAlpha.a * _Color.a;
AlphaDiscard(alpha, _Cutoff);
#ifdef _ALPHAPREMULTIPLY_ON
diffuse *= alpha;
#endif
half3 normalTS = SampleNormal(uv, TEXTURE2D_PARAM(_BumpMap, sampler_BumpMap));
half3 emission = SampleEmission(uv, _EmissionColor.rgb, TEXTURE2D_PARAM(_EmissionMap, sampler_EmissionMap));
half4 specularGloss = SampleSpecularGloss(uv, diffuseAlpha.a, _SpecColor, TEXTURE2D_PARAM(_SpecGlossMap, sampler_SpecGlossMap));
half shininess = IN.posWSShininess.w;
InputData inputData;
InitializeInputData(IN, normalTS, inputData);
return LightweightFragmentBlinnPhong(inputData, diffuse, specularGloss, shininess, emission, alpha);
};
#endif

18
ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/LightweightPassLitSimple.hlsl.meta


fileFormatVersion: 2
guid: ee447e65526c7db45a978c16b28827a9
timeCreated: 1488965025
licenseType: Pro
ShaderImporter:
defaultTextures: []
userData:
assetBundleName:
assetBundleVariant:
fileFormatVersion: 2
guid: ee447e65526c7db45a978c16b28827a9
timeCreated: 1488965025
licenseType: Pro
ShaderImporter:
defaultTextures: []
userData:
assetBundleName:
assetBundleVariant:

155
ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/Shadows.hlsl


TEXTURE2D_SHADOW(_ShadowMap);
SAMPLER_CMP(sampler_ShadowMap);
CBUFFER_START(_ShadowBuffer)
TEXTURE2D_SHADOW(_LocalShadowMapAtlas);
SAMPLER_CMP(sampler_LocalShadowMapAtlas);
CBUFFER_START(_DirectionalShadowBuffer)
// Last cascade is initialized with a no-op matrix. It always transforms
// shadow coord to half(0, 0, NEAR_PLANE). We use this trick to avoid
// branching since ComputeCascadeIndex can return cascade index = MAX_SHADOW_CASCADES

float4 _ShadowmapSize; // (xy: 1/width and 1/height, zw: width and height)
CBUFFER_END
CBUFFER_START(_LocalShadowBuffer)
float4x4 _LocalWorldToShadowAtlas[4];
half _LocalShadowStrength[4];
half4 _LocalShadowOffset0;
half4 _LocalShadowOffset1;
half4 _LocalShadowOffset2;
half4 _LocalShadowOffset3;
float4 _LocalShadowmapSize; // (xy: 1/width and 1/height, zw: width and height)
CBUFFER_END
#if UNITY_REVERSED_Z
#define BEYOND_SHADOW_FAR(shadowCoord) shadowCoord.z <= UNITY_RAW_FAR_CLIP_VALUE
#else

half GetShadowStrength()
struct ShadowSamplingData
{
half4 shadowOffset0;
half4 shadowOffset1;
half4 shadowOffset2;
half4 shadowOffset3;
float4 shadowmapSize;
};
ShadowSamplingData GetMainLightShadowSamplingData()
{
ShadowSamplingData shadowSamplingData;
shadowSamplingData.shadowOffset0 = _ShadowOffset0;
shadowSamplingData.shadowOffset1 = _ShadowOffset1;
shadowSamplingData.shadowOffset2 = _ShadowOffset2;
shadowSamplingData.shadowOffset3 = _ShadowOffset3;
shadowSamplingData.shadowmapSize = _ShadowmapSize;
return shadowSamplingData;
}
ShadowSamplingData GetLocalLightShadowSamplingData()
{
ShadowSamplingData shadowSamplingData;
shadowSamplingData.shadowOffset0 = _LocalShadowOffset0;
shadowSamplingData.shadowOffset1 = _LocalShadowOffset1;
shadowSamplingData.shadowOffset2 = _LocalShadowOffset2;
shadowSamplingData.shadowOffset3 = _LocalShadowOffset3;
shadowSamplingData.shadowmapSize = _LocalShadowmapSize;
return shadowSamplingData;
}
half GetMainLightShadowStrength()
inline half SampleScreenSpaceShadowMap(float4 shadowCoord)
half GetLocalLightShadowStrenth(int lightIndex)
{
return _LocalShadowStrength[lightIndex];
}
half SampleScreenSpaceShadowMap(float4 shadowCoord)
{
shadowCoord.xy /= shadowCoord.w;

return attenuation;
}
inline real SampleShadowmap(float4 shadowCoord)
real SampleShadowmap(float4 shadowCoord, TEXTURE2D_SHADOW_ARGS(ShadowMap, sampler_ShadowMap), ShadowSamplingData samplingData, half shadowStrength)
{
shadowCoord.xyz /= shadowCoord.w;

#ifdef SHADER_API_MOBILE
// 4-tap hardware comparison
real4 attenuation4;
attenuation4.x = SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, shadowCoord.xyz + _ShadowOffset0.xyz);
attenuation4.y = SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, shadowCoord.xyz + _ShadowOffset1.xyz);
attenuation4.z = SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, shadowCoord.xyz + _ShadowOffset2.xyz);
attenuation4.w = SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, shadowCoord.xyz + _ShadowOffset3.xyz);
attenuation4.x = SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, shadowCoord.xyz + samplingData.shadowOffset0.xyz);
attenuation4.y = SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, shadowCoord.xyz + samplingData.shadowOffset1.xyz);
attenuation4.z = SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, shadowCoord.xyz + samplingData.shadowOffset2.xyz);
attenuation4.w = SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, shadowCoord.xyz + samplingData.shadowOffset3.xyz);
SampleShadow_ComputeSamples_Tent_7x7(_ShadowmapSize, shadowCoord.xy, fetchesWeights, fetchesUV);
SampleShadow_ComputeSamples_Tent_7x7(samplingData.shadowmapSize, shadowCoord.xy, fetchesWeights, fetchesUV);
attenuation = fetchesWeights[0] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[0].xy, shadowCoord.z));
attenuation += fetchesWeights[1] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[1].xy, shadowCoord.z));
attenuation += fetchesWeights[2] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[2].xy, shadowCoord.z));
attenuation += fetchesWeights[3] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[3].xy, shadowCoord.z));
attenuation += fetchesWeights[4] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[4].xy, shadowCoord.z));
attenuation += fetchesWeights[5] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[5].xy, shadowCoord.z));
attenuation += fetchesWeights[6] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[6].xy, shadowCoord.z));
attenuation += fetchesWeights[7] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[7].xy, shadowCoord.z));
attenuation += fetchesWeights[8] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[8].xy, shadowCoord.z));
attenuation += fetchesWeights[9] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[9].xy, shadowCoord.z));
attenuation += fetchesWeights[10] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[10].xy, shadowCoord.z));
attenuation += fetchesWeights[11] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[11].xy, shadowCoord.z));
attenuation += fetchesWeights[12] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[12].xy, shadowCoord.z));
attenuation += fetchesWeights[13] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[13].xy, shadowCoord.z));
attenuation += fetchesWeights[14] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[14].xy, shadowCoord.z));
attenuation += fetchesWeights[15] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[15].xy, shadowCoord.z));
attenuation = fetchesWeights[0] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[0].xy, shadowCoord.z));
attenuation += fetchesWeights[1] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[1].xy, shadowCoord.z));
attenuation += fetchesWeights[2] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[2].xy, shadowCoord.z));
attenuation += fetchesWeights[3] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[3].xy, shadowCoord.z));
attenuation += fetchesWeights[4] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[4].xy, shadowCoord.z));
attenuation += fetchesWeights[5] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[5].xy, shadowCoord.z));
attenuation += fetchesWeights[6] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[6].xy, shadowCoord.z));
attenuation += fetchesWeights[7] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[7].xy, shadowCoord.z));
attenuation += fetchesWeights[8] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[8].xy, shadowCoord.z));
attenuation += fetchesWeights[9] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[9].xy, shadowCoord.z));
attenuation += fetchesWeights[10] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[10].xy, shadowCoord.z));
attenuation += fetchesWeights[11] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[11].xy, shadowCoord.z));
attenuation += fetchesWeights[12] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[12].xy, shadowCoord.z));
attenuation += fetchesWeights[13] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[13].xy, shadowCoord.z));
attenuation += fetchesWeights[14] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[14].xy, shadowCoord.z));
attenuation += fetchesWeights[15] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[15].xy, shadowCoord.z));
attenuation = fetchesWeights[0] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[0].xy, shadowCoord.z));
attenuation += fetchesWeights[1] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[1].xy, shadowCoord.z));
attenuation += fetchesWeights[2] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[2].xy, shadowCoord.z));
attenuation += fetchesWeights[3] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[3].xy, shadowCoord.z));
attenuation += fetchesWeights[4] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[4].xy, shadowCoord.z));
attenuation += fetchesWeights[5] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[5].xy, shadowCoord.z));
attenuation += fetchesWeights[6] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[6].xy, shadowCoord.z));
attenuation += fetchesWeights[7] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[7].xy, shadowCoord.z));
attenuation += fetchesWeights[8] * SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, float3(fetchesUV[8].xy, shadowCoord.z));
attenuation = fetchesWeights[0] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[0].xy, shadowCoord.z));
attenuation += fetchesWeights[1] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[1].xy, shadowCoord.z));
attenuation += fetchesWeights[2] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[2].xy, shadowCoord.z));
attenuation += fetchesWeights[3] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[3].xy, shadowCoord.z));
attenuation += fetchesWeights[4] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[4].xy, shadowCoord.z));
attenuation += fetchesWeights[5] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[5].xy, shadowCoord.z));
attenuation += fetchesWeights[6] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[6].xy, shadowCoord.z));
attenuation += fetchesWeights[7] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[7].xy, shadowCoord.z));
attenuation += fetchesWeights[8] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[8].xy, shadowCoord.z));
attenuation = SAMPLE_TEXTURE2D_SHADOW(_ShadowMap, sampler_ShadowMap, shadowCoord.xyz);
attenuation = SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, shadowCoord.xyz);
#if SHADER_HINT_NICE_QUALITY
// Apply shadow strength
attenuation = LerpWhiteTo(attenuation, GetShadowStrength());
#endif
attenuation = LerpWhiteTo(attenuation, shadowStrength);
inline half ComputeCascadeIndex(float3 positionWS)
half ComputeCascadeIndex(float3 positionWS)
{
// TODO: profile if there's a performance improvement if we avoid indexing here
float3 fromCenter0 = positionWS.xyz - _DirShadowSplitSpheres[0].xyz;

return ComputeScreenPos(clipPos);
}
half RealtimeShadowAttenuation(float4 shadowCoord)
half MainLightRealtimeShadowAttenuation(float4 shadowCoord)
#ifndef _SHADOWS_ENABLED
return 1.0h;
#endif
#if defined(NO_SHADOWS)
#if defined(NO_SHADOWS) || !defined(_SHADOWS_ENABLED)
ShadowSamplingData shadowSamplingData = GetMainLightShadowSamplingData();
half shadowStrength = GetMainLightShadowStrength();
return SampleShadowmap(shadowCoord, TEXTURE2D_PARAM(_ShadowMap, sampler_ShadowMap), shadowSamplingData, shadowStrength);
#endif
return SampleShadowmap(shadowCoord);
}
half LocalLightRealtimeShadowAttenuation(int lightIndex, float3 positionWS)
{
// TODO: We can't add more keywords to standard shaders. For now we use
// same _SHADOWS_ENABLED keywords for local lights. In the future we can use
// _LOCAL_SHADOWS_ENABLED keyword
// For now disabling local shadows on mobile until we can get the keyword stripping
//#if defined(NO_SHADOWS) || !defined(_LOCAL_SHADOWS_ENABLED)
#if defined(NO_SHADOWS) || !defined(_SHADOWS_ENABLED) || defined(SHADER_API_MOBILE)
return 1.0h;
#else
float4 shadowCoord = mul(_LocalWorldToShadowAtlas[lightIndex], float4(positionWS, 1.0));
ShadowSamplingData shadowSamplingData = GetLocalLightShadowSamplingData();
half shadowStrength = GetLocalLightShadowStrenth(lightIndex);
return SampleShadowmap(shadowCoord, TEXTURE2D_PARAM(_LocalShadowMapAtlas, sampler_LocalShadowMapAtlas), shadowSamplingData, shadowStrength);
#endif
}

11
ScriptableRenderPipeline/LightweightPipeline/LWRP/Shaders/LightweightScreenSpaceShadows.shader


{
UNITY_SETUP_INSTANCE_ID(i);
#if !defined(UNITY_STEREO_INSTANCING_ENABLED)
// Completely unclear why i.stereoTargetEyeIndex doesn't work here, considering
// Completely unclear why i.stereoTargetEyeIndex doesn't work here, considering
// this has to be correct in order for the texture array slices to be rasterized to
// We can limit this workaround to stereo instancing for now.
UNITY_SETUP_STEREO_EYE_INDEX_POST_VERTEX(i);

//Fetch shadow coordinates for cascade.
float4 coords = TransformWorldToShadowCoord(wpos);
return SampleShadowmap(coords);
// Screenspace shadowmap is only used for directional lights which use orthogonal projection.
ShadowSamplingData shadowSamplingData = GetMainLightShadowSamplingData();
half shadowStrength = GetMainLightShadowStrength();
return SampleShadowmap(coords, TEXTURE2D_PARAM(_ShadowMap, sampler_ShadowMap), shadowSamplingData, shadowStrength);
{
{
ZTest Always
ZWrite Off
Cull Off

#pragma multi_compile _ _SHADOWS_CASCADE
#pragma vertex Vertex
#pragma fragment Fragment
ENDHLSL

3
ScriptableRenderPipeline/LightweightPipeline/LWRP/Shaders/LightweightStandard.shader


#pragma multi_compile _ _MIXED_LIGHTING_SUBTRACTIVE
#pragma multi_compile _ _SHADOWS_ENABLED
// TODO: Enabled this when we have C# keyword stripping
//#pragma multi_compile _ _LOCAL_SHADOWS_ENABLED
// -------------------------------------
// Unity defined keywords
#pragma multi_compile _ DIRLIGHTMAP_COMBINED

2
ScriptableRenderPipeline/LightweightPipeline/LWRP/Shaders/LightweightStandardParticlesSimpleLighting.shader


#define BUMP_SCALE_NOT_SUPPORTED 1
#define NO_SHADOWS 1
#include "LWRP/ShaderLibrary/Particles.hlsl"
#include "LWRP/ShaderLibrary/Lighting.hlsl"

3
ScriptableRenderPipeline/LightweightPipeline/LWRP/Shaders/LightweightStandardSimpleLighting.shader


#pragma multi_compile _ _MIXED_LIGHTING_SUBTRACTIVE
#pragma multi_compile _ _SHADOWS_ENABLED
// TODO: Enabled this when we have C# keyword stripping
//#pragma multi_compile _ _LOCAL_SHADOWS_ENABLED
// -------------------------------------
// Unity defined keywords
#pragma multi_compile _ DIRLIGHTMAP_COMBINED

629
ScriptableRenderPipeline/LightweightPipeline/LWRP/LightweightShadowPass.cs


using System;
using System.Collections.Generic;
using UnityEngine.Rendering;
namespace UnityEngine.Experimental.Rendering.LightweightPipeline
{
[Serializable]
public class ShadowSettings
{
public LightShadows directionalShadowQuality;
public bool screenSpace;
public int directionalShadowAtlasWidth;
public int directionalShadowAtlasHeight;
public LightShadows localLightsShadowQuality;
public int localShadowAtlasWidth;
public int localShadowAtlasHeight;
public int bufferBitCount;
public float maxShadowDistance;
public int directionalLightCascadeCount;
public Vector3 directionalLightCascades;
public RenderTextureFormat shadowmapTextureFormat;
public RenderTextureFormat screenspaceShadowmapTextureFormat;
static ShadowSettings defaultShadowSettings = null;
public static ShadowSettings Default
{
get
{
if (defaultShadowSettings == null)
{
defaultShadowSettings = new ShadowSettings();
defaultShadowSettings.directionalShadowQuality = LightShadows.None;
defaultShadowSettings.screenSpace = true;
defaultShadowSettings.directionalShadowAtlasHeight = defaultShadowSettings.directionalShadowAtlasWidth = 2048;
defaultShadowSettings.localLightsShadowQuality = LightShadows.None;
defaultShadowSettings.localShadowAtlasWidth = 512;
defaultShadowSettings.localShadowAtlasHeight = 512;
defaultShadowSettings.bufferBitCount = 16;
defaultShadowSettings.directionalLightCascadeCount = 1;
defaultShadowSettings.directionalLightCascades = new Vector3(0.05F, 0.2F, 0.3F);
defaultShadowSettings.shadowmapTextureFormat = RenderTextureFormat.Shadowmap;
defaultShadowSettings.screenspaceShadowmapTextureFormat = RenderTextureFormat.R8;
}
return defaultShadowSettings;
}
}
}
public struct ShadowSliceData
{
public Matrix4x4 shadowTransform;
public int offsetX;
public int offsetY;
public int resolution;
public void Clear()
{
shadowTransform = Matrix4x4.identity;
offsetX = offsetY = 0;
resolution = 1024;
}
}
public class LightweightShadowPass
{
public bool IsDirectionalShadowsEnabled { get { return m_ShadowSettings.directionalShadowQuality != LightShadows.None; } }
public bool IsLocalShadowsEnabled { get { return m_ShadowSettings.localLightsShadowQuality != LightShadows.None; }}
public bool RequireScreenSpaceShadowmap { get { return IsDirectionalShadowsEnabled && m_ShadowSettings.screenSpace; } }
public bool HasDirectionalShadowmap { get { return m_DirectionalShadowmapQuality != LightShadows.None; } }
public bool HasLocalLightsShadowmap { get { return m_LocalShadowmapQuality != LightShadows.None; } }
public float RenderingDistance { get { return m_ShadowSettings.maxShadowDistance; } }
private const int kMaxCascades = 4;
private int m_ShadowCasterCascadesCount;
private int m_DirectionalShadowmapID;
private int m_LocalShadowmapID;
private int m_ScreenSpaceShadowmapID;
private ShadowSettings m_ShadowSettings = ShadowSettings.Default;
private Material m_ScreenSpaceShadowsMaterial;
private RenderTexture m_DirectionalShadowmapTexture;
private RenderTexture m_LocalShadowmapTexture;
private RenderTargetIdentifier m_ScreenSpaceShadowmapTexture;
private RenderTextureDescriptor m_DirectionalShadowmapDescriptor;
private RenderTextureDescriptor m_LocalShadowmapDescriptor;
private LightShadows m_DirectionalShadowmapQuality;
private LightShadows m_LocalShadowmapQuality;
private Matrix4x4[] m_DirectionalShadowMatrices;
private ShadowSliceData[] m_CascadeSlices;
private Vector4[] m_CascadeSplitDistances;
private Vector4 m_CascadeSplitRadii;
private Matrix4x4[] m_LocalShadowMatrices;
private ShadowSliceData[] m_LocalLightSlices;
private float[] m_LocalShadowStrength;
public LightweightShadowPass(LightweightPipelineAsset pipelineAsset, int maxLocalLightsCount)
{
BuildShadowSettings(pipelineAsset);
m_DirectionalShadowMatrices = new Matrix4x4[kMaxCascades + 1];
m_CascadeSlices = new ShadowSliceData[kMaxCascades];
m_CascadeSplitDistances = new Vector4[kMaxCascades];
m_LocalShadowMatrices = new Matrix4x4[maxLocalLightsCount];
m_LocalLightSlices = new ShadowSliceData[maxLocalLightsCount];
m_LocalShadowStrength = new float[maxLocalLightsCount];
DirectionalShadowConstantBuffer._WorldToShadow = Shader.PropertyToID("_WorldToShadow");
DirectionalShadowConstantBuffer._ShadowData = Shader.PropertyToID("_ShadowData");
DirectionalShadowConstantBuffer._DirShadowSplitSpheres = Shader.PropertyToID("_DirShadowSplitSpheres");
DirectionalShadowConstantBuffer._DirShadowSplitSphereRadii = Shader.PropertyToID("_DirShadowSplitSphereRadii");
DirectionalShadowConstantBuffer._ShadowOffset0 = Shader.PropertyToID("_ShadowOffset0");
DirectionalShadowConstantBuffer._ShadowOffset1 = Shader.PropertyToID("_ShadowOffset1");
DirectionalShadowConstantBuffer._ShadowOffset2 = Shader.PropertyToID("_ShadowOffset2");
DirectionalShadowConstantBuffer._ShadowOffset3 = Shader.PropertyToID("_ShadowOffset3");
DirectionalShadowConstantBuffer._ShadowmapSize = Shader.PropertyToID("_ShadowmapSize");
LocalShadowConstantBuffer._LocalWorldToShadowAtlas = Shader.PropertyToID("_LocalWorldToShadowAtlas");
LocalShadowConstantBuffer._LocalShadowStrength = Shader.PropertyToID("_LocalShadowStrength");
LocalShadowConstantBuffer._LocalShadowOffset0 = Shader.PropertyToID("_LocalShadowOffset0");
LocalShadowConstantBuffer._LocalShadowOffset1 = Shader.PropertyToID("_LocalShadowOffset1");
LocalShadowConstantBuffer._LocalShadowOffset2 = Shader.PropertyToID("_LocalShadowOffset2");
LocalShadowConstantBuffer._LocalShadowOffset3 = Shader.PropertyToID("_LocalShadowOffset3");
LocalShadowConstantBuffer._LocalShadowmapSize = Shader.PropertyToID("_LocalShadowmapSize");
m_DirectionalShadowmapID = Shader.PropertyToID("_ShadowMap");
m_LocalShadowmapID = Shader.PropertyToID("_LocalShadowMapAtlas");
m_ScreenSpaceShadowmapID = Shader.PropertyToID("_ScreenSpaceShadowMap");
m_ScreenSpaceShadowmapTexture = new RenderTargetIdentifier(m_ScreenSpaceShadowmapID);
m_DirectionalShadowmapDescriptor = new RenderTextureDescriptor(m_ShadowSettings.directionalShadowAtlasWidth,
m_ShadowSettings.directionalShadowAtlasHeight, m_ShadowSettings.shadowmapTextureFormat, m_ShadowSettings.bufferBitCount);
m_LocalShadowmapDescriptor = new RenderTextureDescriptor(m_ShadowSettings.localShadowAtlasWidth,
m_ShadowSettings.localShadowAtlasHeight, m_ShadowSettings.shadowmapTextureFormat, m_ShadowSettings.bufferBitCount);
m_ScreenSpaceShadowsMaterial = CoreUtils.CreateEngineMaterial(pipelineAsset.ScreenSpaceShadowShader);
Clear();
}
public void InitializeResources(CommandBuffer cmd, RenderTextureDescriptor renderTextureDesc)
{
if (RequireScreenSpaceShadowmap)
{
renderTextureDesc.depthBufferBits = 0;
renderTextureDesc.colorFormat = m_ShadowSettings.screenspaceShadowmapTextureFormat;
cmd.GetTemporaryRT(m_ScreenSpaceShadowmapID, renderTextureDesc, FilterMode.Bilinear);
}
}
public void Dispose(CommandBuffer cmd)
{
cmd.ReleaseTemporaryRT(m_ScreenSpaceShadowmapID);
if (m_DirectionalShadowmapTexture)
{
RenderTexture.ReleaseTemporary(m_DirectionalShadowmapTexture);
m_DirectionalShadowmapTexture = null;
}
if (m_LocalShadowmapTexture)
{
RenderTexture.ReleaseTemporary(m_LocalShadowmapTexture);
m_LocalShadowmapTexture = null;
}
}
public bool Execute(ref CullResults cullResults, ref LightData lightData, ref ScriptableRenderContext context)
{
Clear();
bool directionalShadowmapRendered = false;
if (IsDirectionalShadowsEnabled)
directionalShadowmapRendered = RenderDirectionalCascadeShadowmap(ref cullResults, ref lightData, ref context);
if (IsLocalShadowsEnabled)
RenderLocalShadowmapAtlas(ref cullResults, ref lightData, ref context);
return directionalShadowmapRendered && m_ShadowSettings.screenSpace;
}
public void CollectShadows(Camera camera, FrameRenderingConfiguration frameRenderingConfiguration, ref ScriptableRenderContext context)
{
CommandBuffer cmd = CommandBufferPool.Get("Collect Shadows");
SetShadowCollectPassKeywords(cmd);
// Note: The source isn't actually 'used', but there's an engine peculiarity (bug) that
// doesn't like null sources when trying to determine a stereo-ized blit. So for proper
// stereo functionality, we use the screen-space shadow map as the source (until we have
// a better solution).
// An alternative would be DrawProcedural, but that would require further changes in the shader.
cmd.Blit(m_ScreenSpaceShadowmapTexture, m_ScreenSpaceShadowmapTexture, m_ScreenSpaceShadowsMaterial);
LightweightUtils.StartStereoRendering(camera, ref context, frameRenderingConfiguration);
context.ExecuteCommandBuffer(cmd);
LightweightUtils.StopStereoRendering(camera, ref context, frameRenderingConfiguration);
CommandBufferPool.Release(cmd);
}
private void BuildShadowSettings(LightweightPipelineAsset pipelineAsset)
{
bool isOpenGLES2 = SystemInfo.graphicsDeviceType == GraphicsDeviceType.OpenGLES2;
bool supportsLocalShadows = Application.isMobilePlatform || Application.platform == RuntimePlatform.WebGLPlayer;
m_ShadowSettings = ShadowSettings.Default;
m_ShadowSettings.directionalShadowQuality = (LightShadows)pipelineAsset.ShadowSetting;
// Until we can have keyword stripping forcing single cascade hard shadows on gles2
m_ShadowSettings.screenSpace = !isOpenGLES2;
m_ShadowSettings.directionalLightCascadeCount = (isOpenGLES2) ? 1 : pipelineAsset.CascadeCount;
m_ShadowSettings.directionalShadowAtlasWidth = pipelineAsset.ShadowAtlasResolution;
m_ShadowSettings.directionalShadowAtlasHeight = pipelineAsset.ShadowAtlasResolution;
m_ShadowSettings.maxShadowDistance = pipelineAsset.ShadowDistance;
m_ShadowSettings.shadowmapTextureFormat = SystemInfo.SupportsRenderTextureFormat(RenderTextureFormat.Shadowmap)
? RenderTextureFormat.Shadowmap
: RenderTextureFormat.Depth;
m_ShadowSettings.screenspaceShadowmapTextureFormat = SystemInfo.SupportsRenderTextureFormat(RenderTextureFormat.R8)
? RenderTextureFormat.R8
: RenderTextureFormat.ARGB32;
switch (m_ShadowSettings.directionalLightCascadeCount)
{
case 1:
m_ShadowSettings.directionalLightCascades = new Vector3(1.0f, 0.0f, 0.0f);
break;
case 2:
m_ShadowSettings.directionalLightCascades = new Vector3(pipelineAsset.Cascade2Split, 1.0f, 0.0f);
break;
default:
m_ShadowSettings.directionalLightCascades = pipelineAsset.Cascade4Split;
break;
}
// Until we can have keyword stripping we disable local light shadows on mobile
m_ShadowSettings.localLightsShadowQuality = (supportsLocalShadows) ? LightShadows.Hard : LightShadows.None;
}
private void Clear()
{
m_DirectionalShadowmapTexture = null;
m_LocalShadowmapTexture = null;
m_DirectionalShadowmapQuality = LightShadows.None;
m_LocalShadowmapQuality = LightShadows.None;
for (int i = 0; i < m_DirectionalShadowMatrices.Length; ++i)
m_DirectionalShadowMatrices[i] = Matrix4x4.identity;
for (int i = 0; i < m_LocalShadowMatrices.Length; ++i)
m_LocalShadowMatrices[i] = Matrix4x4.identity;
for (int i = 0; i < m_CascadeSplitDistances.Length; ++i)
m_CascadeSplitDistances[i] = new Vector4(0.0f, 0.0f, 0.0f, 0.0f);
m_CascadeSplitRadii = new Vector4(0.0f, 0.0f, 0.0f, 0.0f);
for (int i = 0; i < m_CascadeSlices.Length; ++i)
m_CascadeSlices[i].Clear();
for (int i = 0; i < m_LocalLightSlices.Length; ++i)
m_LocalLightSlices[i].Clear();
for (int i = 0; i < m_LocalShadowStrength.Length; ++i)
m_LocalShadowStrength[i] = 0.0f;
}
private void SetShadowCollectPassKeywords(CommandBuffer cmd)
{
CoreUtils.SetKeyword(cmd, "_SHADOWS_SOFT", m_DirectionalShadowmapQuality == LightShadows.Soft);
CoreUtils.SetKeyword(cmd, "_SHADOWS_CASCADE", m_ShadowSettings.directionalLightCascadeCount > 1);
}
private bool RenderDirectionalCascadeShadowmap(ref CullResults cullResults, ref LightData lightData, ref ScriptableRenderContext context)
{
int shadowLightIndex = lightData.mainLightIndex;
if (shadowLightIndex == -1)
return false;
VisibleLight shadowLight = lightData.visibleLights[shadowLightIndex];
Light light = shadowLight.light;
Debug.Assert(shadowLight.lightType == LightType.Directional);
if (light.shadows == LightShadows.None)
return false;
CommandBuffer cmd = CommandBufferPool.Get("Prepare Directional Shadowmap");
m_ShadowCasterCascadesCount = m_ShadowSettings.directionalLightCascadeCount;
int shadowResolution = GetMaxTileResolutionInAtlas(m_ShadowSettings.directionalShadowAtlasWidth, m_ShadowSettings.directionalShadowAtlasHeight, m_ShadowCasterCascadesCount);
float shadowNearPlane = light.shadowNearPlane;
Bounds bounds;
if (!cullResults.GetShadowCasterBounds(shadowLightIndex, out bounds))
return false;
Matrix4x4 view, proj;
var settings = new DrawShadowsSettings(cullResults, shadowLightIndex);
m_DirectionalShadowmapTexture = RenderTexture.GetTemporary(m_DirectionalShadowmapDescriptor);
m_DirectionalShadowmapTexture.filterMode = FilterMode.Bilinear;
m_DirectionalShadowmapTexture.wrapMode = TextureWrapMode.Clamp;
CoreUtils.SetRenderTarget(cmd, m_DirectionalShadowmapTexture, ClearFlag.Depth);
bool success = false;
for (int cascadeIndex = 0; cascadeIndex < m_ShadowCasterCascadesCount; ++cascadeIndex)
{
success = cullResults.ComputeDirectionalShadowMatricesAndCullingPrimitives(shadowLightIndex,
cascadeIndex, m_ShadowCasterCascadesCount, m_ShadowSettings.directionalLightCascades, shadowResolution, shadowNearPlane, out view, out proj,
out settings.splitData);
float cullingSphereRadius = settings.splitData.cullingSphere.w;
m_CascadeSplitDistances[cascadeIndex] = settings.splitData.cullingSphere;
m_CascadeSplitRadii[cascadeIndex] = cullingSphereRadius * cullingSphereRadius;
if (!success)
break;
m_CascadeSlices[cascadeIndex].offsetX = (cascadeIndex % 2) * shadowResolution;
m_CascadeSlices[cascadeIndex].offsetY = (cascadeIndex / 2) * shadowResolution;
m_CascadeSlices[cascadeIndex].resolution = shadowResolution;
m_CascadeSlices[cascadeIndex].shadowTransform = GetShadowTransform(proj, view);
// If we have shadow cascades baked into the atlas we bake cascade transform
// in each shadow matrix to save shader ALU and L/S
if (m_ShadowCasterCascadesCount > 1)
ApplySliceTransform(ref m_CascadeSlices[cascadeIndex], m_ShadowSettings.directionalShadowAtlasWidth, m_ShadowSettings.directionalShadowAtlasHeight);
SetupShadowCasterConstants(cmd, ref shadowLight, proj, shadowResolution);
RenderShadowSlice(cmd, ref context, ref m_CascadeSlices[cascadeIndex], proj, view, settings);
}
if (success)
{
m_DirectionalShadowmapQuality = (m_ShadowSettings.directionalShadowQuality != LightShadows.Soft) ? LightShadows.Hard : light.shadows;
// In order to avoid shader variants explosion we only do hard shadows when sampling shadowmap in the lit pass.
// GLES2 platform is forced to hard single cascade shadows.
if (!m_ShadowSettings.screenSpace)
m_DirectionalShadowmapQuality = LightShadows.Hard;
SetupDirectionalShadowReceiverConstants(cmd, shadowLight, ref context);
}
context.ExecuteCommandBuffer(cmd);
CommandBufferPool.Release(cmd);
return success;
}
private void RenderLocalShadowmapAtlas(ref CullResults cullResults, ref LightData lightData, ref ScriptableRenderContext context)
{
List<int> localLightIndices = lightData.localLightIndices;
List<VisibleLight> visibleLights = lightData.visibleLights;
int shadowCastingLightsCount = 0;
int localLightsCount = localLightIndices.Count;
for (int i = 0; i < localLightsCount; ++i)
{
VisibleLight shadowLight = visibleLights[localLightIndices[i]];
if (shadowLight.lightType == LightType.Spot && shadowLight.light.shadows != LightShadows.None)
shadowCastingLightsCount++;
}
if (shadowCastingLightsCount == 0)
return;
CommandBuffer cmd = CommandBufferPool.Get("Prepare Local Lights Shadowmap");
Matrix4x4 view, proj;
Bounds bounds;
// TODO: Add support to point light shadows. We make a simplification here that only works
// for spot lights and with max spot shadows per pass.
int atlasWidth = m_ShadowSettings.localShadowAtlasWidth;
int atlasHeight = m_ShadowSettings.localShadowAtlasHeight;
int sliceResolution = GetMaxTileResolutionInAtlas(atlasWidth, atlasHeight, shadowCastingLightsCount);
int shadowSampling = 0;
m_LocalShadowmapTexture = RenderTexture.GetTemporary(m_LocalShadowmapDescriptor);
m_LocalShadowmapTexture.filterMode = FilterMode.Bilinear;
m_LocalShadowmapTexture.wrapMode = TextureWrapMode.Clamp;
CoreUtils.SetRenderTarget(cmd, m_LocalShadowmapTexture, ClearFlag.Depth);
for (int i = 0; i < localLightsCount; ++i)
{
int shadowLightIndex = localLightIndices[i];
VisibleLight shadowLight = visibleLights[shadowLightIndex];
Light light = shadowLight.light;
// TODO: Add support to point light shadows
if (shadowLight.lightType != LightType.Spot || shadowLight.light.shadows == LightShadows.None)
continue;
if (!cullResults.GetShadowCasterBounds(shadowLightIndex, out bounds))
continue;
var settings = new DrawShadowsSettings(cullResults, shadowLightIndex);
if (cullResults.ComputeSpotShadowMatricesAndCullingPrimitives(shadowLightIndex, out view, out proj, out settings.splitData))
{
// This way of computing the shadow slice only work for spots and with most 4 shadow casting lights per pass
// Change this when point lights are supported.
Debug.Assert(localLightsCount <= 4 && shadowLight.lightType == LightType.Spot);
// TODO: We need to pass bias and scale list to shader to be able to support multiple
// shadow casting local lights.
m_LocalLightSlices[i].offsetX = (i % 2) * sliceResolution;
m_LocalLightSlices[i].offsetY = (i / 2) * sliceResolution;
m_LocalLightSlices[i].resolution = sliceResolution;
m_LocalLightSlices[i].shadowTransform = GetShadowTransform(proj, view);
if (shadowCastingLightsCount > 1)
ApplySliceTransform(ref m_LocalLightSlices[i], atlasWidth, atlasHeight);
SetupShadowCasterConstants(cmd, ref shadowLight, proj, sliceResolution);
RenderShadowSlice(cmd, ref context, ref m_LocalLightSlices[i], proj, view, settings);
m_LocalShadowStrength[i] = light.shadowStrength;
shadowSampling = Math.Max(shadowSampling, (int)light.shadows);
}
}
SetupLocalLightsShadowReceiverConstants(cmd, ref context);
m_LocalShadowmapQuality = (LightShadows)Math.Min(shadowSampling, (int)m_ShadowSettings.directionalShadowQuality);
context.ExecuteCommandBuffer(cmd);
CommandBufferPool.Release(cmd);
}
private Matrix4x4 GetShadowTransform(Matrix4x4 proj, Matrix4x4 view)
{
// Currently CullResults ComputeDirectionalShadowMatricesAndCullingPrimitives doesn't
// apply z reversal to projection matrix. We need to do it manually here.
if (SystemInfo.usesReversedZBuffer)
{
proj.m20 = -proj.m20;
proj.m21 = -proj.m21;
proj.m22 = -proj.m22;
proj.m23 = -proj.m23;
}
Matrix4x4 worldToShadow = proj * view;
var textureScaleAndBias = Matrix4x4.identity;
textureScaleAndBias.m00 = 0.5f;
textureScaleAndBias.m11 = 0.5f;
textureScaleAndBias.m22 = 0.5f;
textureScaleAndBias.m03 = 0.5f;
textureScaleAndBias.m23 = 0.5f;
textureScaleAndBias.m13 = 0.5f;
// Apply texture scale and offset to save a MAD in shader.
return textureScaleAndBias * worldToShadow;
}
private void ApplySliceTransform(ref ShadowSliceData shadowSliceData, int atlasWidth, int atlasHeight)
{
Matrix4x4 sliceTransform = Matrix4x4.identity;
float oneOverAtlasWidth = 1.0f / atlasWidth;
float oneOverAtlasHeight = 1.0f / atlasHeight;
sliceTransform.m00 = shadowSliceData.resolution * oneOverAtlasWidth;
sliceTransform.m11 = shadowSliceData.resolution * oneOverAtlasHeight;
sliceTransform.m03 = shadowSliceData.offsetX * oneOverAtlasWidth;
sliceTransform.m13 = shadowSliceData.offsetY * oneOverAtlasHeight;
// Apply shadow slice scale and offset
shadowSliceData.shadowTransform = sliceTransform * shadowSliceData.shadowTransform;
}
private void RenderShadowSlice(CommandBuffer cmd, ref ScriptableRenderContext context, ref ShadowSliceData shadowSliceData,
Matrix4x4 proj, Matrix4x4 view, DrawShadowsSettings settings)
{
cmd.SetViewport(new Rect(shadowSliceData.offsetX, shadowSliceData.offsetY, shadowSliceData.resolution, shadowSliceData.resolution));
cmd.EnableScissorRect(new Rect(shadowSliceData.offsetX + 4, shadowSliceData.offsetY + 4, shadowSliceData.resolution - 8, shadowSliceData.resolution - 8));
cmd.SetViewProjectionMatrices(view, proj);
context.ExecuteCommandBuffer(cmd);
cmd.Clear();
context.DrawShadows(ref settings);
cmd.DisableScissorRect();
context.ExecuteCommandBuffer(cmd);
cmd.Clear();
}
private int GetMaxTileResolutionInAtlas(int atlasWidth, int atlasHeight, int tileCount)
{
int resolution = Mathf.Min(atlasWidth, atlasHeight);
if (tileCount > Mathf.Log(resolution))
{
Debug.LogError(
String.Format(
"Cannot fit {0} tiles into current shadowmap atlas of size ({1}, {2}). ShadowMap Resolution set to zero.",
tileCount, atlasWidth, atlasHeight));
return 0;
}
int currentTileCount = atlasWidth / resolution * atlasHeight / resolution;
while (currentTileCount < tileCount)
{
resolution = resolution >> 1;
currentTileCount = atlasWidth / resolution * atlasHeight / resolution;
}
return resolution;
}
private void SetupShadowCasterConstants(CommandBuffer cmd, ref VisibleLight visibleLight, Matrix4x4 proj, float cascadeResolution)
{
Light light = visibleLight.light;
float bias = 0.0f;
float normalBias = 0.0f;
// Use same kernel radius as built-in pipeline so we can achieve same bias results
// with the default light bias parameters.
const float kernelRadius = 3.65f;
if (visibleLight.lightType == LightType.Directional)
{
// Scale bias by cascade's world space depth range.
// Directional shadow lights have orthogonal projection.
// proj.m22 = -2 / (far - near) since the projection's depth range is [-1.0, 1.0]
// In order to be correct we should multiply bias by 0.5 but this introducing aliasing along cascades more visible.
float sign = (SystemInfo.usesReversedZBuffer) ? 1.0f : -1.0f;
bias = light.shadowBias * proj.m22 * sign;
// Currently only square POT cascades resolutions are used.
// We scale normalBias
double frustumWidth = 2.0 / (double)proj.m00;
double frustumHeight = 2.0 / (double)proj.m11;
float texelSizeX = (float)(frustumWidth / (double)cascadeResolution);
float texelSizeY = (float)(frustumHeight / (double)cascadeResolution);
float texelSize = Mathf.Max(texelSizeX, texelSizeY);
// Since we are applying normal bias on caster side we want an inset normal offset
// thus we use a negative normal bias.
normalBias = -light.shadowNormalBias * texelSize * kernelRadius;
}
else if (visibleLight.lightType == LightType.Spot)
{
float sign = (SystemInfo.usesReversedZBuffer) ? -1.0f : 1.0f;
bias = light.shadowBias * sign;
normalBias = 0.0f;
}
else
{
Debug.LogWarning("Only spot and directional shadow casters are supported in lightweight pipeline");
}
Vector3 lightDirection = -visibleLight.localToWorld.GetColumn(2);
cmd.SetGlobalVector("_ShadowBias", new Vector4(bias, normalBias, 0.0f, 0.0f));
cmd.SetGlobalVector("_LightDirection", new Vector4(lightDirection.x, lightDirection.y, lightDirection.z, 0.0f));
}
private void SetupDirectionalShadowReceiverConstants(CommandBuffer cmd, VisibleLight shadowLight, ref ScriptableRenderContext context)
{
Light light = shadowLight.light;
int cascadeCount = m_ShadowCasterCascadesCount;
for (int i = 0; i < kMaxCascades; ++i)
m_DirectionalShadowMatrices[i] = (cascadeCount >= i) ? m_CascadeSlices[i].shadowTransform : Matrix4x4.identity;
// We setup and additional a no-op WorldToShadow matrix in the last index
// because the ComputeCascadeIndex function in Shadows.hlsl can return an index
// out of bounds. (position not inside any cascade) and we want to avoid branching
Matrix4x4 noOpShadowMatrix = Matrix4x4.zero;
noOpShadowMatrix.m33 = (SystemInfo.usesReversedZBuffer) ? 1.0f : 0.0f;
m_DirectionalShadowMatrices[kMaxCascades] = noOpShadowMatrix;
float invShadowAtlasWidth = 1.0f / m_ShadowSettings.directionalShadowAtlasWidth;
float invShadowAtlasHeight = 1.0f / m_ShadowSettings.directionalShadowAtlasHeight;
float invHalfShadowAtlasWidth = 0.5f * invShadowAtlasWidth;
float invHalfShadowAtlasHeight = 0.5f * invShadowAtlasHeight;
cmd.SetGlobalTexture(m_DirectionalShadowmapID, m_DirectionalShadowmapTexture);
cmd.SetGlobalMatrixArray(DirectionalShadowConstantBuffer._WorldToShadow, m_DirectionalShadowMatrices);
cmd.SetGlobalVector(DirectionalShadowConstantBuffer._ShadowData, new Vector4(light.shadowStrength, 0.0f, 0.0f, 0.0f));
cmd.SetGlobalVectorArray(DirectionalShadowConstantBuffer._DirShadowSplitSpheres, m_CascadeSplitDistances);
cmd.SetGlobalVector(DirectionalShadowConstantBuffer._DirShadowSplitSphereRadii, m_CascadeSplitRadii);
cmd.SetGlobalVector(DirectionalShadowConstantBuffer._ShadowOffset0, new Vector4(-invHalfShadowAtlasWidth, -invHalfShadowAtlasHeight, 0.0f, 0.0f));
cmd.SetGlobalVector(DirectionalShadowConstantBuffer._ShadowOffset1, new Vector4(invHalfShadowAtlasWidth, -invHalfShadowAtlasHeight, 0.0f, 0.0f));
cmd.SetGlobalVector(DirectionalShadowConstantBuffer._ShadowOffset2, new Vector4(-invHalfShadowAtlasWidth, invHalfShadowAtlasHeight, 0.0f, 0.0f));
cmd.SetGlobalVector(DirectionalShadowConstantBuffer._ShadowOffset3, new Vector4(invHalfShadowAtlasWidth, invHalfShadowAtlasHeight, 0.0f, 0.0f));
cmd.SetGlobalVector(DirectionalShadowConstantBuffer._ShadowmapSize, new Vector4(invShadowAtlasWidth, invShadowAtlasHeight,
m_ShadowSettings.directionalShadowAtlasWidth, m_ShadowSettings.directionalShadowAtlasHeight));
context.ExecuteCommandBuffer(cmd);
cmd.Clear();
}
private void SetupLocalLightsShadowReceiverConstants(CommandBuffer cmd, ref ScriptableRenderContext context)
{
for (int i = 0; i < m_LocalLightSlices.Length; ++i)
m_LocalShadowMatrices[i] = m_LocalLightSlices[i].shadowTransform;
float invShadowAtlasWidth = 1.0f / m_ShadowSettings.localShadowAtlasWidth;
float invShadowAtlasHeight = 1.0f / m_ShadowSettings.localShadowAtlasHeight;
float invHalfShadowAtlasWidth = 0.5f * invShadowAtlasWidth;
float invHalfShadowAtlasHeight = 0.5f * invShadowAtlasHeight;
cmd.SetGlobalTexture(m_LocalShadowmapID, m_LocalShadowmapTexture);
cmd.SetGlobalMatrixArray(LocalShadowConstantBuffer._LocalWorldToShadowAtlas, m_LocalShadowMatrices);
cmd.SetGlobalFloatArray(LocalShadowConstantBuffer._LocalShadowStrength, m_LocalShadowStrength);
cmd.SetGlobalVector(LocalShadowConstantBuffer._LocalShadowOffset0, new Vector4(-invHalfShadowAtlasWidth, -invHalfShadowAtlasHeight, 0.0f, 0.0f));
cmd.SetGlobalVector(LocalShadowConstantBuffer._LocalShadowOffset1, new Vector4(invHalfShadowAtlasWidth, -invHalfShadowAtlasHeight, 0.0f, 0.0f));
cmd.SetGlobalVector(LocalShadowConstantBuffer._LocalShadowOffset2, new Vector4(-invHalfShadowAtlasWidth, invHalfShadowAtlasHeight, 0.0f, 0.0f));
cmd.SetGlobalVector(LocalShadowConstantBuffer._LocalShadowOffset3, new Vector4(invHalfShadowAtlasWidth, invHalfShadowAtlasHeight, 0.0f, 0.0f));
cmd.SetGlobalVector(LocalShadowConstantBuffer._LocalShadowmapSize, new Vector4(invShadowAtlasWidth, invShadowAtlasHeight,
m_ShadowSettings.localShadowAtlasWidth, m_ShadowSettings.localShadowAtlasHeight));
context.ExecuteCommandBuffer(cmd);
cmd.Clear();
}
};
}

11
ScriptableRenderPipeline/LightweightPipeline/LWRP/LightweightShadowPass.cs.meta


fileFormatVersion: 2
guid: 51015cd4dddd59d4b95f01cf645067bd
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:
正在加载...
取消
保存