浏览代码

Large refactor of transmission code to share it between material

/main
sebastienlagarde 7 年前
当前提交
870dbb61
共有 11 个文件被更改,包括 393 次插入489 次删除
  1. 6
      com.unity.render-pipelines.core/CoreRP/ShaderLibrary/Common.hlsl
  2. 12
      com.unity.render-pipelines.core/CoreRP/ShaderLibrary/CommonMaterial.hlsl
  3. 128
      com.unity.render-pipelines.high-definition/HDRP/Lighting/LightEvaluation.hlsl
  4. 146
      com.unity.render-pipelines.high-definition/HDRP/Material/Lit/Lit.hlsl
  5. 2
      com.unity.render-pipelines.high-definition/HDRP/Material/Lit/LitBuiltinData.hlsl
  6. 4
      com.unity.render-pipelines.high-definition/HDRP/Material/Lit/LitReference.hlsl
  7. 277
      com.unity.render-pipelines.high-definition/HDRP/Material/StackLit/StackLit.hlsl
  8. 2
      com.unity.render-pipelines.high-definition/HDRP/Material/StackLit/StackLitData.hlsl
  9. 107
      com.unity.render-pipelines.high-definition/HDRP/Material/SubsurfaceScattering/SubsurfaceScattering.hlsl
  10. 189
      com.unity.render-pipelines.high-definition/HDRP/Material/SubsurfaceScattering/SubsurfaceScatteringUtils.hlsl
  11. 9
      com.unity.render-pipelines.high-definition/HDRP/Material/SubsurfaceScattering/SubsurfaceScatteringUtils.hlsl.meta

6
com.unity.render-pipelines.core/CoreRP/ShaderLibrary/Common.hlsl


// Misc utilities
// ----------------------------------------------------------------------------
// Simple function to test a bitfield
bool HasFlag(uint bitfield, uint flag)
{
return (bitfield & flag) != 0;
}
// Normalize that account for vectors with zero length
real3 SafeNormalize(real3 inVec)
{

12
com.unity.render-pipelines.core/CoreRP/ShaderLibrary/CommonMaterial.hlsl


//
// avgNormalLength gives the dispersion information for the covered normals.
//
// Note that hw filtering on the normal map should be trilinear to be conservative, while anisotropic
// Note that hw filtering on the normal map should be trilinear to be conservative, while anisotropic
// risk underfiltering. Could also compute average normal on the fly with a proper normal map format,
// like Toksvig.
float TextureNormalVariance(float avgNormalLength)

{
real oneMinusT = 1.0 - t;
return real3(oneMinusT, oneMinusT, oneMinusT) + b * t;
}
// ----------------------------------------------------------------------------
// Helper
// ----------------------------------------------------------------------------
// Simple function to test a bitfield
bool HasFeatureFlag(uint featureFlags, uint flag)
{
return ((featureFlags & flag) != 0);
}
#endif // UNITY_COMMON_MATERIAL_INCLUDED

128
com.unity.render-pipelines.high-definition/HDRP/Lighting/LightEvaluation.hlsl


weight = Smoothstep01(weight);
weight *= lightData.weight;
}
// ----------------------------------------------------------------------------
// Helper functions to use Transmission with a material
// ----------------------------------------------------------------------------
// For EvaluateTransmission.hlsl file it is required to define a BRDF for the transmission. Defining USE_DIFFUSE_LAMBERT_BRDF use Lambert, otherwise it use Disneydiffuse
#ifdef MATERIAL_INCLUDE_TRANSMISSION
// This function return transmittance to provide to EvaluateTransmission
float3 PreEvaluatePunctualLightTransmission(LightLoopContext lightLoopContext, PositionInputs posInput, float distFrontFaceToLight,
float NdotL, float3 L, LightData lightData, BSDFData bsdfData,
inout float3 normalWS, inout int contactShadowIndex)
{
float3 transmittance = bsdfData.transmittance;
// if NdotL is positive, we do one fetch on front face done by EvaluateLight_XXX. Just regular lighting
// If NdotL is negative, we have two cases:
// - Thin mode: Reuse the front face fetch as shadow for back face - flip the normal for the bias (and the NdotL test) and disable contact shadow
// - Mixed mode: Do a fetch on back face to retrieve the thickness. The thickness will provide a shadow attenuation (with distance travelled there is less transmission).
// (Note: EvaluateLight_Punctual discard the fetch if NdotL < 0)
if (NdotL < 0 && lightData.shadowIndex >= 0)
{
if (HasFlag(bsdfData.materialFeatures, MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_THIN_THICKNESS))
{
normalWS = -normalWS; // Flip normal for shadow bias
contactShadowIndex = -1; // Disable shadow contact
}
else // MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_MIXED_THICKNESS
{
// Recompute transmittance using the thickness value computed from the shadow map.
// Compute the distance from the light to the back face of the object along the light direction.
float distBackFaceToLight = GetPunctualShadowClosestDistance( lightLoopContext.shadowContext, s_linear_clamp_sampler,
posInput.positionWS, lightData.shadowIndex, L, lightData.positionWS);
// Our subsurface scattering models use the semi-infinite planar slab assumption.
// Therefore, we need to find the thickness along the normal.
float thicknessInUnits = (distFrontFaceToLight - distBackFaceToLight) * -NdotL;
float thicknessInMeters = thicknessInUnits * _WorldScales[bsdfData.diffusionProfile].x;
float thicknessInMillimeters = thicknessInMeters * MILLIMETERS_PER_METER;
#if SHADEROPTIONS_USE_DISNEY_SSS
// We need to make sure it's not less than the baked thickness to minimize light leaking.
float thicknessDelta = max(0, thicknessInMillimeters - bsdfData.thickness);
float3 S = _ShapeParams[bsdfData.diffusionProfile].rgb;
// Approximate the decrease of transmittance by e^(-1/3 * dt * S).
#if 0
float3 expOneThird = exp(((-1.0 / 3.0) * thicknessDelta) * S);
#else
// Help the compiler.
float k = (-1.0 / 3.0) * LOG2_E;
float3 p = (k * thicknessDelta) * S;
float3 expOneThird = exp2(p);
#endif
transmittance *= expOneThird;
#else // SHADEROPTIONS_USE_DISNEY_SSS
// We need to make sure it's not less than the baked thickness to minimize light leaking.
thicknessInMillimeters = max(thicknessInMillimeters, bsdfData.thickness);
transmittance = ComputeTransmittanceJimenez(_HalfRcpVariancesAndWeights[bsdfData.diffusionProfile][0].rgb,
_HalfRcpVariancesAndWeights[bsdfData.diffusionProfile][0].a,
_HalfRcpVariancesAndWeights[bsdfData.diffusionProfile][1].rgb,
_HalfRcpVariancesAndWeights[bsdfData.diffusionProfile][1].a,
_TransmissionTintsAndFresnel0[bsdfData.diffusionProfile].rgb,
thicknessInMillimeters);
#endif // SHADEROPTIONS_USE_DISNEY_SSS
// Note: we do not modify the distance to the light, or the light angle for the back face.
// This is a performance-saving optimization which makes sense as long as the thickness is small.
}
}
return transmittance;
}
// This function return transmittance to provide to EvaluateTransmission
float3 PreEvaluateDirectionalLightTransmission(float NdotL, DirectionalLightData lightData, BSDFData bsdfData, inout float3 normalWS, inout int contactShadowIndex)
{
if (NdotL < 0 && lightData.shadowIndex >= 0)
{
if (HasFlag(bsdfData.materialFeatures, MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_THIN_THICKNESS))
{
normalWS = -normalWS; // Flip normal for shadow bias
contactShadowIndex = -1; // Disable shadow contact
}
}
return bsdfData.transmittance;
}
#define TRANSMISSION_WRAP_ANGLE (PI/12) // 15 degrees
#define TRANSMISSION_WRAP_LIGHT cos(PI/2 - TRANSMISSION_WRAP_ANGLE)
// Currently, we only model diffuse transmission. Specular transmission is not yet supported.
// Transmitted lighting is computed as follows:
// - we assume that the object is a thick plane (slab);
// - we reverse the front-facing normal for the back of the object;
// - we assume that the incoming radiance is constant along the entire back surface;
// - we apply BSDF-specific diffuse transmission to transmit the light subsurface and back;
// - we integrate the diffuse reflectance profile w.r.t. the radius (while also accounting
// for the thickness) to compute the transmittance;
// - we multiply the transmitted radiance by the transmittance.
// transmittance come from the call to PreEvaluateLightTransmission
// attenuation come from the call to EvaluateLight_Punctual
float3 EvaluateTransmission(BSDFData bsdfData, float3 transmittance, float NdotL, float NdotV, float LdotV, float attenuation)
{
// Apply wrapped lighting to better handle thin objects at grazing angles.
float wrappedNdotL = ComputeWrappedDiffuseLighting(-NdotL, TRANSMISSION_WRAP_LIGHT);
// Apply BSDF-specific diffuse transmission to attenuation. See also: [SSS-NOTE-TRSM]
// We don't multiply by 'bsdfData.diffuseColor' here. It's done only once in PostEvaluateBSDF().
#ifdef USE_DIFFUSE_LAMBERT_BRDF
attenuation *= Lambert();
#else
attenuation *= DisneyDiffuse(NdotV, max(0, -NdotL), LdotV, bsdfData.perceptualRoughness);
#endif
float intensity = attenuation * wrappedNdotL;
return intensity * transmittance;
}
#endif // #ifdef MATERIAL_INCLUDE_TRANSMISSION

146
com.unity.render-pipelines.high-definition/HDRP/Material/Lit/Lit.hlsl


//-----------------------------------------------------------------------------
// Includes
//-----------------------------------------------------------------------------
// SurfaceData is define in Lit.cs which generate Lit.cs.hlsl
#include "Lit.cs.hlsl"
// Those define allow to include desired SSS/Transmission functions
#define MATERIAL_INCLUDE_SUBSURFACESCATTERING
#define MATERIAL_INCLUDE_TRANSMISSION
#include "HDRP/Material/SubsurfaceScattering/SubsurfaceScattering.hlsl"
#include "HDRP/Material/NormalBuffer.hlsl"
#include "CoreRP/ShaderLibrary/VolumeRendering.hlsl"
// #define LIT_DIFFUSE_LAMBERT_BRDF
// #define USE_DIFFUSE_LAMBERT_BRDF
#define LIT_USE_GGX_ENERGY_COMPENSATION
// Enable reference mode for IBL and area lights

// This is tradeoff between performance and quality. As we store the normal conpressed, recomputing again is higher quality.
// Uncomment this to get speed (to measure), let it comment to get quality
// #define FORWARD_MATERIAL_READ_FROM_WRITTEN_NORMAL_BUFFER
//-----------------------------------------------------------------------------
// Includes
//-----------------------------------------------------------------------------
// SurfaceData is define in Lit.cs which generate Lit.cs.hlsl
#include "Lit.cs.hlsl"
#include "../SubsurfaceScattering/SubsurfaceScattering.hlsl"
// Those define allow to include wanted function from Utils file
#define INCLUDE_SUBSURFACESCATTERING
#define INCLUDE_TRANSMISSION
#ifndef LIT_DIFFUSE_LAMBERT_BRDF
#define TRANSMISSION_DISNEY_DIFFUSE_BRDF
#endif
#include "../SubsurfaceScattering/SubsurfaceScatteringUtils.hlsl"
#include "../NormalBuffer.hlsl"
#include "CoreRP/ShaderLibrary/VolumeRendering.hlsl"
//-----------------------------------------------------------------------------
// Texture and constant buffer declaration

#endif
// There is no metallic with SSS and specular color mode
float metallic = HasFeatureFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_SPECULAR_COLOR | MATERIALFEATUREFLAGS_LIT_SUBSURFACE_SCATTERING | MATERIALFEATUREFLAGS_LIT_TRANSMISSION) ? 0.0 : surfaceData.metallic;
float metallic = HasFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_SPECULAR_COLOR | MATERIALFEATUREFLAGS_LIT_SUBSURFACE_SCATTERING | MATERIALFEATUREFLAGS_LIT_TRANSMISSION) ? 0.0 : surfaceData.metallic;
bsdfData.fresnel0 = HasFeatureFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_SPECULAR_COLOR) ? surfaceData.specularColor : ComputeFresnel0(surfaceData.baseColor, surfaceData.metallic, DEFAULT_SPECULAR_VALUE);
bsdfData.fresnel0 = HasFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_SPECULAR_COLOR) ? surfaceData.specularColor : ComputeFresnel0(surfaceData.baseColor, surfaceData.metallic, DEFAULT_SPECULAR_VALUE);
// Note: we have ZERO_INITIALIZE the struct so bsdfData.anisotropy == 0.0
// Note: DIFFUSION_PROFILE_NEUTRAL_ID is 0

// The UI is in charge of setuping the constrain, not the code. So if users is forward only and want unleash power, it is easy to unleash by some UI change
if (HasFeatureFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_SUBSURFACE_SCATTERING))
if (HasFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_SUBSURFACE_SCATTERING))
if (HasFeatureFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_TRANSMISSION))
if (HasFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_TRANSMISSION))
if (HasFeatureFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_ANISOTROPY))
if (HasFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_ANISOTROPY))
if (HasFeatureFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_IRIDESCENCE))
if (HasFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_IRIDESCENCE))
if (HasFeatureFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_CLEAR_COAT))
if (HasFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_CLEAR_COAT))
{
// Modify perceptualRoughness
FillMaterialClearCoatData(surfaceData.coatMask, bsdfData);

// RT2 - 8:8:8:8
uint materialFeatureId;
if (HasFeatureFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_SUBSURFACE_SCATTERING | MATERIALFEATUREFLAGS_LIT_TRANSMISSION))
if (HasFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_SUBSURFACE_SCATTERING | MATERIALFEATUREFLAGS_LIT_TRANSMISSION))
{
// Reminder that during GBuffer pass we know statically material materialFeatures
if ((surfaceData.materialFeatures & (MATERIALFEATUREFLAGS_LIT_SUBSURFACE_SCATTERING | MATERIALFEATUREFLAGS_LIT_TRANSMISSION)) == (MATERIALFEATUREFLAGS_LIT_SUBSURFACE_SCATTERING | MATERIALFEATUREFLAGS_LIT_TRANSMISSION))

// It allows us to delay reading the G-Buffer 0 until the end of the deferred lighting shader.
outGBuffer2.rgb = float3(surfaceData.specularOcclusion, surfaceData.thickness, outGBuffer0.a);
}
else if (HasFeatureFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_ANISOTROPY))
else if (HasFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_ANISOTROPY))
{
materialFeatureId = GBUFFER_LIT_ANISOTROPIC;

sinOrCos,
PackFloatInt8bit(surfaceData.metallic, storeSin | quadrant, 8));
}
else if (HasFeatureFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_IRIDESCENCE))
else if (HasFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_IRIDESCENCE))
{
materialFeatureId = GBUFFER_LIT_IRIDESCENCE;

float3 diffuseColor = surfaceData.baseColor;
float3 fresnel0 = surfaceData.specularColor;
if (!HasFeatureFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_SPECULAR_COLOR))
if (!HasFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_SPECULAR_COLOR))
{
// Convert from the metallic parametrization.
diffuseColor = ComputeDiffuseColor(surfaceData.baseColor, surfaceData.metallic);

}
// Ensure that surfaceData.coatMask is 0 if the feature is not enabled
float coatMask = HasFeatureFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_CLEAR_COAT) ? surfaceData.coatMask : 0.0;
float coatMask = HasFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_LIT_CLEAR_COAT) ? surfaceData.coatMask : 0.0;
// Note: no need to store MATERIALFEATUREFLAGS_LIT_STANDARD, always present
outGBuffer2.a = PackFloatInt8bit(coatMask, materialFeatureId, 8);

bakeDiffuseLighting = inGBuffer3.rgb;
// Decompress feature-specific data from the G-Buffer.
bool pixelHasMetallic = HasFeatureFlag(pixelFeatureFlags, MATERIALFEATUREFLAGS_LIT_ANISOTROPY | MATERIALFEATUREFLAGS_LIT_IRIDESCENCE);
bool pixelHasMetallic = HasFlag(pixelFeatureFlags, MATERIALFEATUREFLAGS_LIT_ANISOTROPY | MATERIALFEATUREFLAGS_LIT_IRIDESCENCE);
if (pixelHasMetallic)
{

bsdfData.fresnel0 = FastSRGBToLinear(inGBuffer2.rgb); // Later possibly overwritten by SSS
}
if (HasFeatureFlag(pixelFeatureFlags, MATERIALFEATUREFLAGS_LIT_SUBSURFACE_SCATTERING | MATERIALFEATUREFLAGS_LIT_TRANSMISSION))
if (HasFlag(pixelFeatureFlags, MATERIALFEATUREFLAGS_LIT_SUBSURFACE_SCATTERING | MATERIALFEATUREFLAGS_LIT_TRANSMISSION))
{
SSSData sssData;

// in case one feature is enabled and not the other.
// The neutral value of subsurfaceMask is 0 (handled by ZERO_INITIALIZE).
if (HasFeatureFlag(pixelFeatureFlags, MATERIALFEATUREFLAGS_LIT_SUBSURFACE_SCATTERING))
if (HasFlag(pixelFeatureFlags, MATERIALFEATUREFLAGS_LIT_SUBSURFACE_SCATTERING))
if (HasFeatureFlag(pixelFeatureFlags, MATERIALFEATUREFLAGS_LIT_TRANSMISSION))
if (HasFlag(pixelFeatureFlags, MATERIALFEATUREFLAGS_LIT_TRANSMISSION))
{
FillMaterialTransmission(sssData.diffusionProfile, inGBuffer2.g, bsdfData);
}

// Special handling for anisotropy: When anisotropy is present in a tile, the whole tile will use anisotropy to avoid divergent evaluation of GGX that increase the cost
// Note that it mean that when we have the worse case, we always use Anisotropy and shader like deferred.shader are always the worst case (but only used for debugging)
if (HasFeatureFlag(tileFeatureFlags, MATERIALFEATUREFLAGS_LIT_ANISOTROPY))
if (HasFlag(tileFeatureFlags, MATERIALFEATUREFLAGS_LIT_ANISOTROPY))
if (HasFeatureFlag(pixelFeatureFlags, MATERIALFEATUREFLAGS_LIT_ANISOTROPY))
if (HasFlag(pixelFeatureFlags, MATERIALFEATUREFLAGS_LIT_ANISOTROPY))
{
anisotropy = inGBuffer2.r * 2.0 - 1.0;

}
// The neutral value of iridescenceMask is 0 (handled by ZERO_INITIALIZE).
if (HasFeatureFlag(pixelFeatureFlags, MATERIALFEATUREFLAGS_LIT_IRIDESCENCE))
if (HasFlag(pixelFeatureFlags, MATERIALFEATUREFLAGS_LIT_IRIDESCENCE))
if (HasFeatureFlag(pixelFeatureFlags, MATERIALFEATUREFLAGS_LIT_CLEAR_COAT))
if (HasFlag(pixelFeatureFlags, MATERIALFEATUREFLAGS_LIT_CLEAR_COAT))
{
// Modify perceptualRoughness
FillMaterialClearCoatData(coatMask, bsdfData);

float NdotV = ClampNdotV(preLightData.NdotV);
// We modify the bsdfData.fresnel0 here for iridescence
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_IRIDESCENCE))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_IRIDESCENCE))
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_CLEAR_COAT))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_CLEAR_COAT))
{
topIor = lerp(1.0, CLEAR_COAT_IOR, bsdfData.coatMask);
// HACK: Use the reflected direction to specify the Fresnel coefficient for pre-convolved envmaps

}
// We modify the bsdfData.fresnel0 here for clearCoat
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_CLEAR_COAT))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_CLEAR_COAT))
{
// Fresnel0 is deduced from interface between air and material (Assume to be 1.5 in Unity, or a metal).
// but here we go from clear coat (1.5) to material, we need to update fresnel0

// We avoid divergent evaluation of the GGX, as that nearly doubles the cost.
// If the tile has anisotropy, all the pixels within the tile are evaluated as anisotropic.
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_ANISOTROPY))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_ANISOTROPY))
{
float TdotV = dot(bsdfData.tangentWS, V);
float BdotV = dot(bsdfData.bitangentWS, V);

// Handle IBL + multiscattering
float specularReflectivity;
GetPreIntegratedFGDGGXAndDisneyDiffuse(NdotV, preLightData.iblPerceptualRoughness, bsdfData.fresnel0, preLightData.specularFGD, preLightData.diffuseFGD, specularReflectivity);
#ifdef LIT_DIFFUSE_LAMBERT_BRDF
#ifdef USE_DIFFUSE_LAMBERT_BRDF
preLightData.diffuseFGD = 1.0;
#endif

float2 uv = LTC_LUT_OFFSET + LTC_LUT_SCALE * float2(bsdfData.perceptualRoughness, theta * INV_HALF_PI);
// Note we load the matrix transpose (avoid to have to transpose it in shader)
#ifdef LIT_DIFFUSE_LAMBERT_BRDF
#ifdef USE_DIFFUSE_LAMBERT_BRDF
preLightData.ltcTransformDiffuse = k_identity3x3;
#else
// Get the inverse LTC matrix for Disney Diffuse

float ltcGGXFresnelMagnitude = ltcMagnitude.g;
float ltcDisneyDiffuseMagnitude = ltcMagnitude.b;
#ifdef LIT_DIFFUSE_LAMBERT_BRDF
#ifdef USE_DIFFUSE_LAMBERT_BRDF
preLightData.ltcMagnitudeDiffuse = 1;
#else
preLightData.ltcMagnitudeDiffuse = ltcDisneyDiffuseMagnitude;

// to match the reference for rough metals, but further darkens dielectrics.
preLightData.ltcMagnitudeFresnel = bsdfData.fresnel0 * ltcGGXFresnelMagnitudeDiff + (float3)ltcGGXFresnelMagnitude;
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_CLEAR_COAT))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_CLEAR_COAT))
{
float2 uv = LTC_LUT_OFFSET + LTC_LUT_SCALE * float2(CLEAR_COAT_PERCEPTUAL_ROUGHNESS, theta * INV_HALF_PI);

// This function require the 3 structure surfaceData, builtinData, bsdfData because it may require both the engine side data, and data that will not be store inside the gbuffer.
float3 GetBakedDiffuseLighting(SurfaceData surfaceData, BuiltinData builtinData, BSDFData bsdfData, PreLightData preLightData)
{
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_SUBSURFACE_SCATTERING))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_SUBSURFACE_SCATTERING)) // This test is static as it is done in GBuffer or forward pass, will be remove by compiler
uint texturingMode = (bsdfData.materialFeatures >> MATERIAL_FEATURE_FLAGS_SSS_TEXTURING_MODE_OFFSET) & 3;
bsdfData.diffuseColor = ApplySubsurfaceScatteringTexturingMode(texturingMode, bsdfData.diffuseColor);
bsdfData.diffuseColor = GetModifiedDiffuseColorForSSS(bsdfData); // local modification of bsdfData
}
#ifdef DEBUG_DISPLAY

#ifdef HAS_LIGHTLOOP
#ifndef _SURFACE_TYPE_TRANSPARENT
// For /Lighting/LightEvaluation.hlsl:
#define USE_DEFERRED_DIRECTIONAL_SHADOWS // Deferred shadows are always enabled for opaque objects
#endif

// Instead we use the incorrect angle NdotV as an approximation for LdotH for Fresnel evaluation.
// The Fresnel with iridescence and NDotV angle is precomputed ahead and here we jsut reuse the result.
// Thus why we shouldn't apply a second time Fresnel on the value if iridescence is enabled.
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_IRIDESCENCE))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_IRIDESCENCE))
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_ANISOTROPY))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_ANISOTROPY))
{
float3 H = (L + V) * invLenLV;

}
specularLighting = F * DV;
#ifdef LIT_DIFFUSE_LAMBERT_BRDF
#ifdef USE_DIFFUSE_LAMBERT_BRDF
float diffuseTerm = Lambert();
#else
// A note on subsurface scattering: [SSS-NOTE-TRSM]

// We don't multiply by 'bsdfData.diffuseColor' here. It's done only once in PostEvaluateBSDF().
diffuseLighting = diffuseTerm;
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_CLEAR_COAT))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_CLEAR_COAT))
{
// Apply isotropic GGX for clear coat
// Note: coat F is scalar as it is a dieletric

float3 L = -lightData.forward; // Lights point backward in Unity
float NdotL = dot(N, L);
// Caution: This function modify N and lightData
PreEvaluateLightTransmission(NdotL, bsdfData, N, lightData.contactShadowIndex); // contactShadowIndex is only modify for the code of this function
float3 transmittance = float3(0.0, 0.0, 0.0);
if (HasFlag(bsdfData.materialFeatures, MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_THIN_THICKNESS))
{
// Caution: This function modify N and contactShadowIndex
transmittance = PreEvaluateDirectionalLightTransmission(NdotL, lightData, bsdfData, N, lightData.contactShadowIndex); // contactShadowIndex is only modify for the code of this function
}
float3 color;
float attenuation;

}
// The mixed thickness mode is not supported by directional lights due to poor quality and high performance impact.
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_THIN_THICKNESS))
if (HasFlag(bsdfData.materialFeatures, MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_THIN_THICKNESS))
lighting.diffuse += EvaluateTransmission(bsdfData, bsdfData.transmittance, NdotL, NdotV, LdotV, attenuation * lightData.diffuseScale);
lighting.diffuse += EvaluateTransmission(bsdfData, transmittance, NdotL, NdotV, LdotV, attenuation * lightData.diffuseScale);
}
// Save ALU by applying light and cookie colors only once.

float3 N = bsdfData.normalWS;
float NdotL = dot(N, L);
// Caution: This function modify N and lightData
PreEvaluateLightTransmission(NdotL, bsdfData, N, lightData.contactShadowIndex);
float3 transmittance = float3(0.0, 0.0, 0.0);
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_TRANSMISSION))
{
// Caution: This function modify N and contactShadowIndex
transmittance = PreEvaluatePunctualLightTransmission(lightLoopContext, posInput, distances.x, NdotL, L, lightData, bsdfData, N, lightData.contactShadowIndex);
}
float3 color;
float attenuation;

lighting.specular *= intensity * lightData.specularScale;
}
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_TRANSMISSION))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_TRANSMISSION))
lighting.diffuse += PostEvaluateLightTransmission( lightLoopContext.shadowContext, posInput, distances.x,
NdotL, NdotV, LdotV, L, attenuation * lightData.diffuseScale, lightData, bsdfData);
lighting.diffuse += EvaluateTransmission(bsdfData, transmittance, NdotL, NdotV, LdotV, attenuation * lightData.diffuseScale);
}
// Save ALU by applying light and cookie colors only once.

// We don't multiply by 'bsdfData.diffuseColor' here. It's done only once in PostEvaluateBSDF().
lighting.diffuse = preLightData.ltcMagnitudeDiffuse * ltcValue;
UNITY_BRANCH if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_TRANSMISSION))
UNITY_BRANCH if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_TRANSMISSION))
{
// Flip the view vector and the normal. The bitangent stays the same.
float3x3 flipMatrix = float3x3(-1, 0, 0,

lighting.specular = preLightData.ltcMagnitudeFresnel * ltcValue;
// Evaluate the coat part
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_CLEAR_COAT))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_CLEAR_COAT))
{
lighting.diffuse *= (1.0 - preLightData.ltcMagnitudeCoatFresnel);
lighting.specular *= (1.0 - preLightData.ltcMagnitudeCoatFresnel);

// We don't multiply by 'bsdfData.diffuseColor' here. It's done only once in PostEvaluateBSDF().
lighting.diffuse = preLightData.ltcMagnitudeDiffuse * ltcValue;
UNITY_BRANCH if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_TRANSMISSION))
UNITY_BRANCH if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_TRANSMISSION))
{
// Flip the view vector and the normal. The bitangent stays the same.
float3x3 flipMatrix = float3x3(-1, 0, 0,

lighting.specular += preLightData.ltcMagnitudeFresnel * ltcValue;
// Evaluate the coat part
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_CLEAR_COAT))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_CLEAR_COAT))
{
lighting.diffuse *= (1.0 - preLightData.ltcMagnitudeCoatFresnel);
lighting.specular *= (1.0 - preLightData.ltcMagnitudeCoatFresnel);

// TODO: handle clear coat
// #ifdef LIT_DIFFUSE_LAMBERT_BRDF
// #ifdef USE_DIFFUSE_LAMBERT_BRDF
// envLighting += IntegrateLambertIBLRef(lightData, V, bsdfData);
// #else
// envLighting += IntegrateDisneyDiffuseIBLRef(lightLoopContext, V, preLightData, lightData, bsdfData);

// Don't do clear coating for refraction
float3 coatR = preLightData.coatIblR;
if (GPUImageBasedLightingType == GPUIMAGEBASEDLIGHTINGTYPE_REFLECTION && HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_CLEAR_COAT))
if (GPUImageBasedLightingType == GPUIMAGEBASEDLIGHTINGTYPE_REFLECTION && HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_CLEAR_COAT))
{
float unusedWeight = 0.0;
EvaluateLight_EnvIntersection(positionWS, bsdfData.normalWS, lightData, influenceShapeType, coatR, unusedWeight);

envLighting = F * preLD.rgb;
// Evaluate the Clear Coat component if needed
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_CLEAR_COAT))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_CLEAR_COAT))
{
// No correction needed for coatR as it is smooth
// Note: coat F is scalar as it is a dieletric

ApplyAmbientOcclusionFactor(aoFactor, bakeLightingData, lighting);
// Subsurface scattering mdoe
float3 modifiedDiffuseColor = SSSGetModifiedDiffuseColor(bsdfData);
// Subsurface scattering mode
float3 modifiedDiffuseColor = GetModifiedDiffuseColorForSSS(bsdfData);
// Apply the albedo to the direct diffuse lighting (only once). The indirect (baked)
// diffuse lighting has already had the albedo applied in GetBakedDiffuseLighting().

2
com.unity.render-pipelines.high-definition/HDRP/Material/Lit/LitBuiltinData.hlsl


// It is safe to call this function here as surfaceData have been filled
// We want to know if we must enable transmission on GI for SSS material, if the material have no SSS, this code will be remove by the compiler.
BSDFData bsdfData = ConvertSurfaceDataToBSDFData(input.positionSS.xy, surfaceData);
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_TRANSMISSION))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_TRANSMISSION))
{
// For now simply recall the function with inverted normal, the compiler should be able to optimize the lightmap case to not resample the directional lightmap
// however it will not optimize the lightprobe case due to the proxy volume relying on dynamic if (we rely must get right of this dynamic if), not a problem for SH9, but a problem for proxy volume.

4
com.unity.render-pipelines.high-definition/HDRP/Material/Lit/LitReference.hlsl


{
float3x3 localToWorld;
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_ANISOTROPY))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_ANISOTROPY))
{
localToWorld = float3x3(bsdfData.tangentWS, bsdfData.bitangentWS, bsdfData.normalWS);
}

float weightOverPdf;
// GGX BRDF
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_ANISOTROPY))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_LIT_ANISOTROPY))
{
ImportanceSampleAnisoGGX(u, V, localToWorld, bsdfData.roughnessT, bsdfData.roughnessB, NdotV, L, VdotH, NdotL, weightOverPdf);
}

277
com.unity.render-pipelines.high-definition/HDRP/Material/StackLit/StackLit.hlsl


//-----------------------------------------------------------------------------
// SurfaceData and BSDFData
// Includes
#include "../SubsurfaceScattering/SubsurfaceScattering.hlsl"
#include "../NormalBuffer.hlsl"
// Those define allow to include desired SSS/Transmission functions
#define MATERIAL_INCLUDE_SUBSURFACESCATTERING
#define MATERIAL_INCLUDE_TRANSMISSION
#include "HDRP/Material/SubsurfaceScattering/SubsurfaceScattering.hlsl"
#include "HDRP/Material/NormalBuffer.hlsl"
//-----------------------------------------------------------------------------
// Configuration
//-----------------------------------------------------------------------------
// Choose between Lambert diffuse and Disney diffuse (enable only one of them)
#define USE_DIFFUSE_LAMBERT_BRDF // For transmission
#define STACK_LIT_USE_GGX_ENERGY_COMPENSATION
//-----------------------------------------------------------------------------
// Texture and constant buffer declaration
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Texture and constant buffer declaration
//-----------------------------------------------------------------------------
// Required for SSS, GBuffer texture declaration
TEXTURE2D(_GBufferTexture0);

// Needed for MATERIAL_FEATURE_MASK_FLAGS.
#include "../../Lighting/LightLoop/LightLoop.cs.hlsl"
// Additional bits set in 'bsdfData.materialFeatures' to save registers and simplify feature tracking.
#define MATERIAL_FEATURE_FLAGS_SSS_OUTPUT_SPLIT_LIGHTING ((MATERIAL_FEATURE_MASK_FLAGS + 1) << 0)
#define MATERIAL_FEATURE_FLAGS_SSS_TEXTURING_MODE_OFFSET FastLog2((MATERIAL_FEATURE_MASK_FLAGS + 1) << 1) // 2 bits
#define MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_MIXED_THICKNESS ((MATERIAL_FEATURE_MASK_FLAGS + 1) << 3)
// Flags used as a shortcut to know if we have thin mode transmission
#define MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_THIN_THICKNESS ((MATERIAL_FEATURE_MASK_FLAGS + 1) << 4)
//
//
//#define _STACKLIT_DEBUG

#define TOP_VLAYER_IDX 0
#define BOTTOM_VLAYER_IDX 2
//-----------------------------------------------------------------------------
// Configuration
//-----------------------------------------------------------------------------
#define LIT_DIFFUSE_LAMBERT_BRDF // TODO Disney Diffuse
#define LIT_USE_GGX_ENERGY_COMPENSATION
//-----------------------------------------------------------------------------
// Helper functions/variable specific to this material
//-----------------------------------------------------------------------------

{
return (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_COAT));
return (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_COAT));
return (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_COAT_NORMAL_MAP));
}
// Assume that bsdfData.diffusionProfile is init
void FillMaterialSSS(uint diffusionProfile, float subsurfaceMask, inout BSDFData bsdfData)
{
bsdfData.diffusionProfile = diffusionProfile;
bsdfData.fresnel0 = _TransmissionTintsAndFresnel0[diffusionProfile].a;
bsdfData.subsurfaceMask = subsurfaceMask;
bsdfData.materialFeatures |= MATERIAL_FEATURE_FLAGS_SSS_OUTPUT_SPLIT_LIGHTING;
bsdfData.materialFeatures |= GetSubsurfaceScatteringTexturingMode(bsdfData.diffusionProfile) << MATERIAL_FEATURE_FLAGS_SSS_TEXTURING_MODE_OFFSET;
}
// Assume that bsdfData.diffusionProfile is init
void FillMaterialTransmission(uint diffusionProfile, float thickness, inout BSDFData bsdfData)
{
bsdfData.diffusionProfile = diffusionProfile;
bsdfData.fresnel0 = _TransmissionTintsAndFresnel0[diffusionProfile].a;
bsdfData.thickness = _ThicknessRemaps[diffusionProfile].x + _ThicknessRemaps[diffusionProfile].y * thickness;
// The difference between the thin and the regular (a.k.a. auto-thickness) modes is the following:
// * in the thin object mode, we assume that the geometry is thin enough for us to safely share
// the shadowing information between the front and the back faces;
// * the thin mode uses baked (textured) thickness for all transmission calculations;
// * the thin mode uses wrapped diffuse lighting for the NdotL;
// * the auto-thickness mode uses the baked (textured) thickness to compute transmission from
// indirect lighting and non-shadow-casting lights; for shadowed lights, it calculates
// the thickness using the distance to the closest occluder sampled from the shadow map.
// If the distance is large, it may indicate that the closest occluder is not the back face of
// the current object. That's not a problem, since large thickness will result in low intensity.
bool useThinObjectMode = IsBitSet(asuint(_TransmissionFlags), diffusionProfile);
bsdfData.materialFeatures |= useThinObjectMode ? MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_THIN_THICKNESS : MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_MIXED_THICKNESS;
// Compute transmittance using baked thickness here. It may be overridden for direct lighting
// in the auto-thickness mode (but is always be used for indirect lighting).
#if SHADEROPTIONS_USE_DISNEY_SSS
bsdfData.transmittance = ComputeTransmittanceDisney(_ShapeParams[diffusionProfile].rgb,
_TransmissionTintsAndFresnel0[diffusionProfile].rgb,
bsdfData.thickness);
#else
bsdfData.transmittance = ComputeTransmittanceJimenez(_HalfRcpVariancesAndWeights[diffusionProfile][0].rgb,
_HalfRcpVariancesAndWeights[diffusionProfile][0].a,
_HalfRcpVariancesAndWeights[diffusionProfile][1].rgb,
_HalfRcpVariancesAndWeights[diffusionProfile][1].a,
_TransmissionTintsAndFresnel0[diffusionProfile].rgb,
bsdfData.thickness);
#endif
return (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_COAT_NORMAL_MAP));
}
// Assume bsdfData.normalWS is init

// When using clear cloat we want to use the coat normal for the various deferred effect
// as it is the most dominant one
if (HasFeatureFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_COAT))
if (HasFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_COAT))
{
normalData.normalWS = surfaceData.coatNormalWS;
normalData.perceptualRoughness = surfaceData.coatPerceptualSmoothness;

bsdfData.lobeMix = surfaceData.lobeMix;
// There is no metallic with SSS and specular color mode
float metallic = HasFeatureFlag(surfaceData.materialFeatures, /*MATERIALFEATUREFLAGS_LIT_SPECULAR_COLOR |*/ MATERIALFEATUREFLAGS_STACK_LIT_SUBSURFACE_SCATTERING | MATERIALFEATUREFLAGS_STACK_LIT_TRANSMISSION) ? 0.0 : surfaceData.metallic;
float metallic = HasFlag(surfaceData.materialFeatures, /*MATERIALFEATUREFLAGS_LIT_SPECULAR_COLOR |*/ MATERIALFEATUREFLAGS_STACK_LIT_SUBSURFACE_SCATTERING | MATERIALFEATUREFLAGS_STACK_LIT_TRANSMISSION) ? 0.0 : surfaceData.metallic;
bsdfData.diffuseColor = ComputeDiffuseColor(surfaceData.baseColor, metallic);
bsdfData.fresnel0 = ComputeFresnel0(surfaceData.baseColor, surfaceData.metallic, IorToFresnel0(surfaceData.dielectricIor));

if (HasFeatureFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_SUBSURFACE_SCATTERING))
if (HasFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_SUBSURFACE_SCATTERING))
if (HasFeatureFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_TRANSMISSION))
if (HasFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_TRANSMISSION))
if (HasFeatureFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_ANISOTROPY))
if (HasFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_ANISOTROPY))
if (HasFeatureFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_COAT))
if (HasFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_COAT))
if (HasFeatureFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_COAT_NORMAL_MAP))
if (HasFlag(surfaceData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_COAT_NORMAL_MAP))
{
bsdfData.coatNormalWS = surfaceData.coatNormalWS;
}

#else
bool perLightOption = false;
#endif
bool haveAnisotropy = HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_ANISOTROPY);
bool haveAnisotropy = HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_ANISOTROPY);
if( !calledPerLight )
{

// Otherwise, the calculation of these is done for each light
//
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_ANISOTROPY))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_ANISOTROPY))
{
// Note: there's no anisotropy possible on coat.
float TdotV = dot(bsdfData.tangentWS, V);

preLightData.iblR[BASE_LOBEA_IDX] = GetSpecularDominantDir(N[BASE_NORMAL_IDX], iblR[BASE_LOBEA_IDX], preLightData.iblPerceptualRoughness[BASE_LOBEA_IDX], baseLayerNdotV);
preLightData.iblR[BASE_LOBEB_IDX] = GetSpecularDominantDir(N[BASE_NORMAL_IDX], iblR[BASE_LOBEB_IDX], preLightData.iblPerceptualRoughness[BASE_LOBEB_IDX], baseLayerNdotV);
#ifdef LIT_USE_GGX_ENERGY_COMPENSATION
#ifdef STACK_LIT_USE_GGX_ENERGY_COMPENSATION
// TODOENERGY:
// This is actually changing FGD to FGDinf in the vlayering framework but this needs to be folded in the energy calculations
// during ComputeAdding. Also even analytical lights will need the energy terms, not just IBL.

preLightData.iblPerceptualRoughness[0] = bsdfData.perceptualRoughnessA;
preLightData.iblPerceptualRoughness[1] = bsdfData.perceptualRoughnessB;
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_ANISOTROPY))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_ANISOTROPY))
{
float TdotV = dot(bsdfData.tangentWS, V);
float BdotV = dot(bsdfData.bitangentWS, V);

preLightData.iblR[0] = GetSpecularDominantDir(N[0], iblR[0], preLightData.iblPerceptualRoughness[0], NdotV[0]);
preLightData.iblR[1] = GetSpecularDominantDir(N[0], iblR[1], preLightData.iblPerceptualRoughness[1], NdotV[0]);
#ifdef LIT_USE_GGX_ENERGY_COMPENSATION
#ifdef STACK_LIT_USE_GGX_ENERGY_COMPENSATION
// Here, since this compensation term is already an average applied to a sum
// (akin to a "split sum" approximation) we will just lerp our two "specularReflectivities".
// When in vlayering, the same split approximation idea is embedded in the whole aggregate statistical

preLightData.diffuseFGD = lerp(diffuseFGD[0], diffuseFGD[1], bsdfData.lobeMix);
#ifdef LIT_DIFFUSE_LAMBERT_BRDF
#ifdef USE_DIFFUSE_LAMBERT_BRDF
// TODO: DiffuseFGD not done anyway, applied on bakeddiffuse:
preLightData.diffuseFGD = 1.0;
#endif

// This function require the 3 structure surfaceData, builtinData, bsdfData because it may require both the engine side data, and data that will not be store inside the gbuffer.
float3 GetBakedDiffuseLighting(SurfaceData surfaceData, BuiltinData builtinData, BSDFData bsdfData, PreLightData preLightData)
{
// TODO: Handle SSS
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_SUBSURFACE_SCATTERING)) // This test is static as it is done in GBuffer or forward pass, will be remove by compiler
{
bsdfData.diffuseColor = GetModifiedDiffuseColorForSSS(bsdfData); // local modification of bsdfData
}
#ifdef DEBUG_DISPLAY
if (_DebugLightingMode == DEBUGLIGHTINGMODE_LUX_METER)

lightTransportData.emissiveColor = builtinData.emissiveColor;
return lightTransportData;
}
//-----------------------------------------------------------------------------
// Subsurface Scattering functions
//-----------------------------------------------------------------------------
bool ShouldOutputSplitLighting(BSDFData bsdfData)
{
return HasFeatureFlag(bsdfData.materialFeatures, MATERIAL_FEATURE_FLAGS_SSS_OUTPUT_SPLIT_LIGHTING);
}
//-----------------------------------------------------------------------------

// Finally, we will update the partLambdaV if we did ComputeAdding per light, having the proper
// angles wrt to refraction option and/or dual normal maps and considering anisotropy:
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_ANISOTROPY))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_ANISOTROPY))
{
#ifdef VLAYERED_RECOMPUTE_PERLIGHT
#ifdef VLAYERED_USE_REFRACTED_ANGLES_FOR_BASE

else
{
// No vlayering, just check if we need H:
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_ANISOTROPY))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_ANISOTROPY))
{
H = (L[0] + V[0]) * invLenLV;
}

// VLAYERING:
// --------------------------------------------------------------------
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_ANISOTROPY))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_ANISOTROPY))
{
float TdotH, TdotL, BdotH, BdotL;

// TODO: Proper Fresnel
float3 F = F_Schlick(bsdfData.fresnel0, savedLdotH);
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_ANISOTROPY))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_ANISOTROPY))
{
float TdotH, TdotL, BdotH, BdotL;
CalculateAnisoAngles(bsdfData, H, L[0], V[0], TdotH, TdotL, BdotH, BdotL);

}//...BSDF
float3 EvaluateTransmission(BSDFData bsdfData, float3 transmittance, float NdotL, float NdotV, float LdotV, float attenuation)
{
// Apply wrapped lighting to better handle thin objects at grazing angles.
float wrappedNdotL = ComputeWrappedDiffuseLighting(-NdotL, SSS_WRAP_LIGHT);
// Apply BSDF-specific diffuse transmission to attenuation. See also: [SSS-NOTE-TRSM]
// We don't multiply by 'bsdfData.diffuseColor' here. It's done only once in PostEvaluateBSDF().
attenuation *= Lambert();
float intensity = attenuation * wrappedNdotL;
return intensity * transmittance;
}
void EvaluateBSDF_GetNormalUnclampedNdotV(BSDFData bsdfData, PreLightData preLightData, float3 V, out float3 N, out float unclampedNdotV)
{
//TODO: This affects transmission and SSS, choose the normal the use when we have

EvaluateBSDF_GetNormalUnclampedNdotV(bsdfData, preLightData, V, N, unclampedNdotV);
float3 L = -lightData.forward; // Lights point backward in Unity
float NdotV = ClampNdotV(unclampedNdotV);
float LdotV = dot(L, V);
// For shadow attenuation (ie receiver bias), always use the geometric normal
float3 shadowBiasNormal = bsdfData.geomNormalWS;
float3 transmittance = float3(0.0, 0.0, 0.0);
if (HasFlag(bsdfData.materialFeatures, MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_THIN_THICKNESS))
{
// Caution: This function modify N and contactShadowIndex
transmittance = PreEvaluateDirectionalLightTransmission(NdotL, lightData, bsdfData, shadowBiasNormal, lightData.contactShadowIndex); // contactShadowIndex is only modify for the code of this function
}
// When using thin transmission mode we don't fetch shadow map for back face, we reuse front face shadow
// However we flip the normal for the bias (and the NdotL test) and disable contact shadow
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_THIN_THICKNESS) && NdotL < 0)
{
// Disable shadow contact in case of transmission and backface shadow
N = -N;
lightData.contactShadowIndex = -1; // This is only modify for the scope of this function
}
// For shadow attenuation (ie receiver bias), always use the geometric normal:
EvaluateLight_Directional(lightLoopContext, posInput, lightData, bakeLightingData, bsdfData.geomNormalWS, L, color, attenuation);
EvaluateLight_Directional(lightLoopContext, posInput, lightData, bakeLightingData, shadowBiasNormal, L, color, attenuation);
float intensity = max(0, attenuation); // Warning: attenuation can be greater than 1 due to the inverse square attenuation (when position is close to light)

}
// The mixed thickness mode is not supported by directional lights due to poor quality and high performance impact.
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_THIN_THICKNESS))
if (HasFlag(bsdfData.materialFeatures, MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_THIN_THICKNESS))
float NdotV = ClampNdotV(unclampedNdotV);
float LdotV = dot(L, V);
lighting.diffuse += EvaluateTransmission(bsdfData, bsdfData.transmittance, NdotL, NdotV, LdotV, attenuation * lightData.diffuseScale);
lighting.diffuse += EvaluateTransmission(bsdfData, transmittance, NdotL, NdotV, LdotV, attenuation * lightData.diffuseScale);
}
// Save ALU by applying light and cookie colors only once.

float3 N; float unclampedNdotV;
EvaluateBSDF_GetNormalUnclampedNdotV(bsdfData, preLightData, V, N, unclampedNdotV);
float NdotV = ClampNdotV(unclampedNdotV);
float LdotV = dot(L, V);
float3 color;
float attenuation;
// When using thin transmission mode we don't fetch shadow map for back face, we reuse front face shadow
// However we flip the normal for the bias (and the NdotL test) and disable contact shadow
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_THIN_THICKNESS) && NdotL < 0)
// For shadow attenuation (ie receiver bias), always use the geometric normal
float3 shadowBiasNormal = bsdfData.geomNormalWS;
float3 transmittance = float3(0.0, 0.0, 0.0);
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_TRANSMISSION))
// Disable shadow contact in case of transmission and backface shadow
N = -N;
lightData.contactShadowIndex = -1; // This is only modify for the scope of this function
// Caution: This function modify N and contactShadowIndex
transmittance = PreEvaluatePunctualLightTransmission(lightLoopContext, posInput, distances.x, NdotL, L, lightData, bsdfData, shadowBiasNormal, lightData.contactShadowIndex);
float3 color;
float attenuation;
EvaluateLight_Punctual(lightLoopContext, posInput, lightData, bakeLightingData, bsdfData.geomNormalWS, L,
EvaluateLight_Punctual(lightLoopContext, posInput, lightData, bakeLightingData, shadowBiasNormal, L,
lightToSample, distances, color, attenuation);

lighting.specular *= intensity * lightData.specularScale;
}
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_TRANSMISSION))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_TRANSMISSION))
float3 transmittance = bsdfData.transmittance;
bool mixedThicknessMode = HasFeatureFlag(bsdfData.materialFeatures, MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_MIXED_THICKNESS)
&& NdotL < 0 && lightData.shadowIndex >= 0;
if (mixedThicknessMode)
{
// Recompute transmittance using the thickness value computed from the shadow map.
// Compute the distance from the light to the back face of the object along the light direction.
float distBackFaceToLight = GetPunctualShadowClosestDistance(lightLoopContext.shadowContext, s_linear_clamp_sampler,
posInput.positionWS, lightData.shadowIndex, L, lightData.positionWS);
// Our subsurface scattering models use the semi-infinite planar slab assumption.
// Therefore, we need to find the thickness along the normal.
float distFrontFaceToLight = distances.x;
float thicknessInUnits = (distFrontFaceToLight - distBackFaceToLight) * -NdotL;
float thicknessInMeters = thicknessInUnits * _WorldScales[bsdfData.diffusionProfile].x;
float thicknessInMillimeters = thicknessInMeters * MILLIMETERS_PER_METER;
#if SHADEROPTIONS_USE_DISNEY_SSS
// We need to make sure it's not less than the baked thickness to minimize light leaking.
float thicknessDelta = max(0, thicknessInMillimeters - bsdfData.thickness);
float3 S = _ShapeParams[bsdfData.diffusionProfile].rgb;
// Approximate the decrease of transmittance by e^(-1/3 * dt * S).
#if 0
float3 expOneThird = exp(((-1.0 / 3.0) * thicknessDelta) * S);
#else
// Help the compiler.
float k = (-1.0 / 3.0) * LOG2_E;
float3 p = (k * thicknessDelta) * S;
float3 expOneThird = exp2(p);
#endif
transmittance *= expOneThird;
#else // SHADEROPTIONS_USE_DISNEY_SSS
// We need to make sure it's not less than the baked thickness to minimize light leaking.
thicknessInMillimeters = max(thicknessInMillimeters, bsdfData.thickness);
transmittance = ComputeTransmittanceJimenez(_HalfRcpVariancesAndWeights[bsdfData.diffusionProfile][0].rgb,
_HalfRcpVariancesAndWeights[bsdfData.diffusionProfile][0].a,
_HalfRcpVariancesAndWeights[bsdfData.diffusionProfile][1].rgb,
_HalfRcpVariancesAndWeights[bsdfData.diffusionProfile][1].a,
_TransmissionTintsAndFresnel0[bsdfData.diffusionProfile].rgb,
thicknessInMillimeters);
#endif // SHADEROPTIONS_USE_DISNEY_SSS
}
// Note: we do not modify the distance to the light, or the light angle for the back face.
// This is a performance-saving optimization which makes sense as long as the thickness is small.
float NdotV = ClampNdotV(unclampedNdotV);
float LdotV = dot(L, V);
// We use diffuse lighting for accumulation since it is going to be blurred during the SSS pass.
lighting.diffuse += EvaluateTransmission(bsdfData, transmittance, NdotL, NdotV, LdotV, attenuation * lightData.diffuseScale);
}

// TODO: Handle all lobes in reference
// #ifdef LIT_DIFFUSE_LAMBERT_BRDF
// #ifdef USE_DIFFUSE_LAMBERT_BRDF
// envLighting += IntegrateLambertIBLRef(lightData, V, bsdfData);
// #else
// envLighting += IntegrateDisneyDiffuseIBLRef(lightLoopContext, V, preLightData, lightData, bsdfData);

ApplyAmbientOcclusionFactor(aoFactor, bakeLightingData, lighting);
// Subsurface scattering mdoe
uint texturingMode = (bsdfData.materialFeatures >> MATERIAL_FEATURE_FLAGS_SSS_TEXTURING_MODE_OFFSET) & 3;
float3 modifiedDiffuseColor = ApplySubsurfaceScatteringTexturingMode(texturingMode, bsdfData.diffuseColor);
// Subsurface scattering mode
float3 modifiedDiffuseColor = GetModifiedDiffuseColorForSSS(bsdfData);
// Apply the albedo to the direct diffuse lighting (only once). The indirect (baked)
// diffuse lighting has already had the albedo applied in GetBakedDiffuseLighting().

2
com.unity.render-pipelines.high-definition/HDRP/Material/StackLit/StackLitData.hlsl


// It is safe to call this function here as surfaceData have been filled
// We want to know if we must enable transmission on GI for SSS material, if the material have no SSS, this code will be remove by the compiler.
BSDFData bsdfData = ConvertSurfaceDataToBSDFData(input.positionSS.xy, surfaceData);
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_TRANSMISSION))
if (HasFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_TRANSMISSION))
{
// For now simply recall the function with inverted normal, the compiler should be able to optimize the lightmap case to not resample the directional lightmap
// however it will not optimize the lightprobe case due to the proxy volume relying on dynamic if (we rely must get right of this dynamic if), not a problem for SH9, but a problem for proxy volume.

107
com.unity.render-pipelines.high-definition/HDRP/Material/SubsurfaceScattering/SubsurfaceScattering.hlsl


#include "../DiffusionProfile/DiffusionProfileSettings.cs.hlsl"
#include "../DiffusionProfile/DiffusionProfile.hlsl"
// constant buffer declaration
CBUFFER_START(UnitySSSAndTransmissionParameters)
// Warning: Unity is not able to losslessly transfer integers larger than 2^24 to the shader system.
// Therefore, we bitcast uint to float in C#, and bitcast back to uint in the shader.

{
return subsurfaceLighting.b > 0;
}
// ----------------------------------------------------------------------------
// Helper functions to use SSS/Transmission with a material
// ----------------------------------------------------------------------------
// Following function allow to easily setup SSS and transmission inside a material.
// User can request either SSS functions, or Transmission functions, or both, by defining MATERIAL_INCLUDE_SUBSURFACESCATTERING and/or MATERIAL_INCLUDE_TRANSMISSION
// before including this file.
// + It require that the material follow naming convention for properties inside BSDFData
// struct BSDFData
// {
// (...)
// // Share for SSS and Transmission
// uint materialFeatures;
// uint diffusionProfile;
// // For SSS
// float3 diffuseColor;
// float3 fresnel0;
// float subsurfaceMask;
// // For transmission
// float thickness;
// bool useThickObjectMode;
// float3 transmittance;
// perceptualRoughness; // Only if user chose to support DisneyDiffuse
// (...)
// }
// Note: Transmission functions for light evaluation are included in LightEvaluation.hlsl file also based on the MATERIAL_INCLUDE_TRANSMISSION
// For LightEvaluation.hlsl file it is required to define a BRDF for the transmission. Defining USE_DIFFUSE_LAMBERT_BRDF use Lambert, otherwise it use Disneydiffuse
#define MATERIAL_FEATURE_SSS_TRANSMISSION_START (1 << 16) // It should be safe to start these flags
#define MATERIAL_FEATURE_FLAGS_SSS_OUTPUT_SPLIT_LIGHTING ((MATERIAL_FEATURE_SSS_TRANSMISSION_START) << 0)
#define MATERIAL_FEATURE_FLAGS_SSS_TEXTURING_MODE_OFFSET FastLog2((MATERIAL_FEATURE_SSS_TRANSMISSION_START) << 1) // Note: The texture mode is 2bit, thus go from '<< 1' to '<< 3'
#define MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_MIXED_THICKNESS ((MATERIAL_FEATURE_SSS_TRANSMISSION_START) << 3)
// Flags used as a shortcut to know if we have thin mode transmission
#define MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_THIN_THICKNESS ((MATERIAL_FEATURE_SSS_TRANSMISSION_START) << 4)
#ifdef MATERIAL_INCLUDE_SUBSURFACESCATTERING
void FillMaterialSSS(uint diffusionProfile, float subsurfaceMask, inout BSDFData bsdfData)
{
bsdfData.diffusionProfile = diffusionProfile;
bsdfData.fresnel0 = _TransmissionTintsAndFresnel0[diffusionProfile].a;
bsdfData.subsurfaceMask = subsurfaceMask;
bsdfData.materialFeatures |= MATERIAL_FEATURE_FLAGS_SSS_OUTPUT_SPLIT_LIGHTING;
bsdfData.materialFeatures |= GetSubsurfaceScatteringTexturingMode(diffusionProfile) << MATERIAL_FEATURE_FLAGS_SSS_TEXTURING_MODE_OFFSET;
}
bool ShouldOutputSplitLighting(BSDFData bsdfData)
{
return HasFlag(bsdfData.materialFeatures, MATERIAL_FEATURE_FLAGS_SSS_OUTPUT_SPLIT_LIGHTING);
}
float3 GetModifiedDiffuseColorForSSS(BSDFData bsdfData)
{
// Subsurface scattering mode
uint texturingMode = (bsdfData.materialFeatures >> MATERIAL_FEATURE_FLAGS_SSS_TEXTURING_MODE_OFFSET) & 3;
return ApplySubsurfaceScatteringTexturingMode(texturingMode, bsdfData.diffuseColor);
}
#endif
#ifdef MATERIAL_INCLUDE_TRANSMISSION
// Assume that bsdfData.diffusionProfile is init
void FillMaterialTransmission(uint diffusionProfile, float thickness, inout BSDFData bsdfData)
{
bsdfData.diffusionProfile = diffusionProfile;
bsdfData.fresnel0 = _TransmissionTintsAndFresnel0[diffusionProfile].a;
bsdfData.thickness = _ThicknessRemaps[diffusionProfile].x + _ThicknessRemaps[diffusionProfile].y * thickness;
// The difference between the thin and the regular (a.k.a. auto-thickness) modes is the following:
// * in the thin object mode, we assume that the geometry is thin enough for us to safely share
// the shadowing information between the front and the back faces;
// * the thin mode uses baked (textured) thickness for all transmission calculations;
// * the thin mode uses wrapped diffuse lighting for the NdotL;
// * the auto-thickness mode uses the baked (textured) thickness to compute transmission from
// indirect lighting and non-shadow-casting lights; for shadowed lights, it calculates
// the thickness using the distance to the closest occluder sampled from the shadow map.
// If the distance is large, it may indicate that the closest occluder is not the back face of
// the current object. That's not a problem, since large thickness will result in low intensity.
bool useThinObjectMode = IsBitSet(asuint(_TransmissionFlags), diffusionProfile);
bsdfData.materialFeatures |= useThinObjectMode ? MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_THIN_THICKNESS : MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_MIXED_THICKNESS;
// Compute transmittance using baked thickness here. It may be overridden for direct lighting
// in the auto-thickness mode (but is always used for indirect lighting).
#if SHADEROPTIONS_USE_DISNEY_SSS
bsdfData.transmittance = ComputeTransmittanceDisney(_ShapeParams[diffusionProfile].rgb,
_TransmissionTintsAndFresnel0[diffusionProfile].rgb,
bsdfData.thickness);
#else
bsdfData.transmittance = ComputeTransmittanceJimenez( _HalfRcpVariancesAndWeights[diffusionProfile][0].rgb,
_HalfRcpVariancesAndWeights[diffusionProfile][0].a,
_HalfRcpVariancesAndWeights[diffusionProfile][1].rgb,
_HalfRcpVariancesAndWeights[diffusionProfile][1].a,
_TransmissionTintsAndFresnel0[diffusionProfile].rgb,
bsdfData.thickness);
#endif
}
#endif

189
com.unity.render-pipelines.high-definition/HDRP/Material/SubsurfaceScattering/SubsurfaceScatteringUtils.hlsl


// This must be include after SubsurfaceScattering.hlsl
// This files include various helper function to easily setup SSS and transmission inside a material. It require that the material follow naming convention
// User can request either SSS function, or Transmission, or both, they need to define INCLUDE_SUBSURFACESCATTERING and/or INCLUDE_TRANSMISSION
// And define the lighting model to use for transmission. By default it is Lambert. For Disney: TRANSMISSION_DISNEY_DIFFUSE_BRDF
// Also user need to be sure that upper 16bit of bsdfData.materialFeatures are not used
// Additional bits set in 'bsdfData.materialFeatures' to save registers and simplify feature tracking.
#define MATERIAL_FEATURE_SSS_TRANSMISSION_START (1 << 16) // It should be safe to start these flags
#define MATERIAL_FEATURE_FLAGS_SSS_OUTPUT_SPLIT_LIGHTING ((MATERIAL_FEATURE_SSS_TRANSMISSION_START) << 0)
#define MATERIAL_FEATURE_FLAGS_SSS_TEXTURING_MODE_OFFSET FastLog2((MATERIAL_FEATURE_SSS_TRANSMISSION_START) << 1) // 2 bits
#define MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_MIXED_THICKNESS ((MATERIAL_FEATURE_SSS_TRANSMISSION_START) << 3)
// Flags used as a shortcut to know if we have thin mode transmission
#define MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_THIN_THICKNESS ((MATERIAL_FEATURE_SSS_TRANSMISSION_START) << 4)
#ifdef INCLUDE_SUBSURFACESCATTERING
// Assume that bsdfData.diffusionProfile is init
void FillMaterialSSS(uint diffusionProfile, float subsurfaceMask, inout BSDFData bsdfData)
{
bsdfData.diffusionProfile = diffusionProfile;
bsdfData.fresnel0 = _TransmissionTintsAndFresnel0[diffusionProfile].a;
bsdfData.subsurfaceMask = subsurfaceMask;
bsdfData.materialFeatures |= MATERIAL_FEATURE_FLAGS_SSS_OUTPUT_SPLIT_LIGHTING;
bsdfData.materialFeatures |= GetSubsurfaceScatteringTexturingMode(bsdfData.diffusionProfile) << MATERIAL_FEATURE_FLAGS_SSS_TEXTURING_MODE_OFFSET;
}
bool ShouldOutputSplitLighting(BSDFData bsdfData)
{
return HasFeatureFlag(bsdfData.materialFeatures, MATERIAL_FEATURE_FLAGS_SSS_OUTPUT_SPLIT_LIGHTING);
}
float3 SSSGetModifiedDiffuseColor(BSDFData bsdfData)
{
// Subsurface scattering mdoe
uint texturingMode = (bsdfData.materialFeatures >> MATERIAL_FEATURE_FLAGS_SSS_TEXTURING_MODE_OFFSET) & 3;
return ApplySubsurfaceScatteringTexturingMode(texturingMode, bsdfData.diffuseColor);
}
#endif
#ifdef INCLUDE_TRANSMISSION
// Assume that bsdfData.diffusionProfile is init
void FillMaterialTransmission(uint diffusionProfile, float thickness, inout BSDFData bsdfData)
{
bsdfData.diffusionProfile = diffusionProfile;
bsdfData.fresnel0 = _TransmissionTintsAndFresnel0[diffusionProfile].a;
bsdfData.thickness = _ThicknessRemaps[diffusionProfile].x + _ThicknessRemaps[diffusionProfile].y * thickness;
// The difference between the thin and the regular (a.k.a. auto-thickness) modes is the following:
// * in the thin object mode, we assume that the geometry is thin enough for us to safely share
// the shadowing information between the front and the back faces;
// * the thin mode uses baked (textured) thickness for all transmission calculations;
// * the thin mode uses wrapped diffuse lighting for the NdotL;
// * the auto-thickness mode uses the baked (textured) thickness to compute transmission from
// indirect lighting and non-shadow-casting lights; for shadowed lights, it calculates
// the thickness using the distance to the closest occluder sampled from the shadow map.
// If the distance is large, it may indicate that the closest occluder is not the back face of
// the current object. That's not a problem, since large thickness will result in low intensity.
bool useThinObjectMode = IsBitSet(asuint(_TransmissionFlags), diffusionProfile);
bsdfData.materialFeatures |= useThinObjectMode ? MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_THIN_THICKNESS : MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_MIXED_THICKNESS;
// Compute transmittance using baked thickness here. It may be overridden for direct lighting
// in the auto-thickness mode (but is always used for indirect lighting).
#if SHADEROPTIONS_USE_DISNEY_SSS
bsdfData.transmittance = ComputeTransmittanceDisney(_ShapeParams[diffusionProfile].rgb,
_TransmissionTintsAndFresnel0[diffusionProfile].rgb,
bsdfData.thickness);
#else
bsdfData.transmittance = ComputeTransmittanceJimenez(_HalfRcpVariancesAndWeights[diffusionProfile][0].rgb,
_HalfRcpVariancesAndWeights[diffusionProfile][0].a,
_HalfRcpVariancesAndWeights[diffusionProfile][1].rgb,
_HalfRcpVariancesAndWeights[diffusionProfile][1].a,
_TransmissionTintsAndFresnel0[diffusionProfile].rgb,
bsdfData.thickness);
#endif
}
#ifdef HAS_LIGHTLOOP
#define SSS_WRAP_ANGLE (PI/12) // 15 degrees
#define SSS_WRAP_LIGHT cos(PI/2 - SSS_WRAP_ANGLE)
// Currently, we only model diffuse transmission. Specular transmission is not yet supported.
// Transmitted lighting is computed as follows:
// - we assume that the object is a thick plane (slab);
// - we reverse the front-facing normal for the back of the object;
// - we assume that the incoming radiance is constant along the entire back surface;
// - we apply BSDF-specific diffuse transmission to transmit the light subsurface and back;
// - we integrate the diffuse reflectance profile w.r.t. the radius (while also accounting
// for the thickness) to compute the transmittance;
// - we multiply the transmitted radiance by the transmittance.
float3 EvaluateTransmission(BSDFData bsdfData, float3 transmittance, float NdotL, float NdotV, float LdotV, float attenuation)
{
// Apply wrapped lighting to better handle thin objects at grazing angles.
float wrappedNdotL = ComputeWrappedDiffuseLighting(-NdotL, SSS_WRAP_LIGHT);
// Apply BSDF-specific diffuse transmission to attenuation. See also: [SSS-NOTE-TRSM]
// We don't multiply by 'bsdfData.diffuseColor' here. It's done only once in PostEvaluateBSDF().
#ifdef TRANSMISSION_DISNEY_DIFFUSE_BRDF
attenuation *= DisneyDiffuse(NdotV, max(0, -NdotL), LdotV, bsdfData.perceptualRoughness);
#else
attenuation *= Lambert();
#endif
float intensity = attenuation * wrappedNdotL;
return intensity * transmittance;
}
void PreEvaluateLightTransmission(float NdotL, BSDFData bsdfData, inout float3 normalWS, inout float contactShadowIndex)
{
// When using thin transmission mode we don't fetch shadow map for back face, we reuse front face shadow
// However we flip the normal for the bias (and the NdotL test) and disable contact shadow
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_THIN_THICKNESS) && NdotL < 0)
{
// Disable shadow contact in case of transmission and backface shadow
normalWS = -normalWS;
contactShadowIndex = -1;
}
}
float3 PostEvaluateLightTransmission( ShadowContext shadowContext, PositionInputs posInput, float distFrontFaceToLight,
float NdotL, float NdotV, float LdotV, float3 L, float attenuation, LightData lightData, BSDFData bsdfData)
{
float3 transmittance = bsdfData.transmittance;
// Note that if NdotL is positive, we have one fetch on front face done by EvaluateLight_Punctual, otherwise we have only one fetch
// done by transmission code here (EvaluateLight_Punctual discard the fetch if NdotL < 0)
bool mixedThicknessMode = HasFeatureFlag(bsdfData.materialFeatures, MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_MIXED_THICKNESS)
&& NdotL < 0 && lightData.shadowIndex >= 0;
if (mixedThicknessMode)
{
// Recompute transmittance using the thickness value computed from the shadow map.
// Compute the distance from the light to the back face of the object along the light direction.
float distBackFaceToLight = GetPunctualShadowClosestDistance(shadowContext, s_linear_clamp_sampler,
posInput.positionWS, lightData.shadowIndex, L, lightData.positionWS);
// Our subsurface scattering models use the semi-infinite planar slab assumption.
// Therefore, we need to find the thickness along the normal.
float thicknessInUnits = (distFrontFaceToLight - distBackFaceToLight) * -NdotL;
float thicknessInMeters = thicknessInUnits * _WorldScales[bsdfData.diffusionProfile].x;
float thicknessInMillimeters = thicknessInMeters * MILLIMETERS_PER_METER;
#if SHADEROPTIONS_USE_DISNEY_SSS
// We need to make sure it's not less than the baked thickness to minimize light leaking.
float thicknessDelta = max(0, thicknessInMillimeters - bsdfData.thickness);
float3 S = _ShapeParams[bsdfData.diffusionProfile].rgb;
// Approximate the decrease of transmittance by e^(-1/3 * dt * S).
#if 0
float3 expOneThird = exp(((-1.0 / 3.0) * thicknessDelta) * S);
#else
// Help the compiler.
float k = (-1.0 / 3.0) * LOG2_E;
float3 p = (k * thicknessDelta) * S;
float3 expOneThird = exp2(p);
#endif
transmittance *= expOneThird;
#else // SHADEROPTIONS_USE_DISNEY_SSS
// We need to make sure it's not less than the baked thickness to minimize light leaking.
thicknessInMillimeters = max(thicknessInMillimeters, bsdfData.thickness);
transmittance = ComputeTransmittanceJimenez(_HalfRcpVariancesAndWeights[bsdfData.diffusionProfile][0].rgb,
_HalfRcpVariancesAndWeights[bsdfData.diffusionProfile][0].a,
_HalfRcpVariancesAndWeights[bsdfData.diffusionProfile][1].rgb,
_HalfRcpVariancesAndWeights[bsdfData.diffusionProfile][1].a,
_TransmissionTintsAndFresnel0[bsdfData.diffusionProfile].rgb,
thicknessInMillimeters);
#endif // SHADEROPTIONS_USE_DISNEY_SSS
}
// Note: we do not modify the distance to the light, or the light angle for the back face.
// This is a performance-saving optimization which makes sense as long as the thickness is small.
return EvaluateTransmission(bsdfData, transmittance, NdotL, NdotV, LdotV, attenuation);
}
#endif // HAS_LIGHTLOOP
#endif

9
com.unity.render-pipelines.high-definition/HDRP/Material/SubsurfaceScattering/SubsurfaceScatteringUtils.hlsl.meta


fileFormatVersion: 2
guid: 599608ec6436ae244a53c032ec1b96fe
ShaderImporter:
externalObjects: {}
defaultTextures: []
nonModifiableTextures: []
userData:
assetBundleName:
assetBundleVariant:
正在加载...
取消
保存