}//...BSDF
float3 EvaluateTransmission(BSDFData bsdfData, float3 transmittance, float NdotL, float NdotV, float LdotV, float attenuation)
{
// Apply wrapped lighting to better handle thin objects at grazing angles.
float wrappedNdotL = ComputeWrappedDiffuseLighting(-NdotL, SSS_WRAP_LIGHT);
// Apply BSDF-specific diffuse transmission to attenuation. See also: [SSS-NOTE-TRSM]
// We don't multiply by 'bsdfData.diffuseColor' here. It's done only once in PostEvaluateBSDF().
attenuation *= Lambert();
float intensity = attenuation * wrappedNdotL;
return intensity * transmittance;
}
//-----------------------------------------------------------------------------
// EvaluateBSDF_Directional
//-----------------------------------------------------------------------------
float3 N = bsdfData.normalWS;
float3 L = -lightData.forward; // Lights point backward in Unity
// float NdotV = ClampNdotV(preLightData.NdotV);
float NdotV = ClampNdotV(preLightData.NdotV);
// float LdotV = dot(L, V);
float LdotV = dot(L, V);
// color and attenuation are outputted by EvaluateLight:
float3 color;
lighting.specular *= intensity * lightData.specularScale;
}
// NEWLITTODO: Mixed thickness, transmission
// The mixed thickness mode is not supported by directional lights due to poor quality and high performance impact.
bool mixedThicknessMode = HasFeatureFlag(bsdfData.materialFeatures, MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_MIXED_THICKNESS);
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_TRANSMISSION) && !mixedThicknessMode)
{
// We use diffuse lighting for accumulation since it is going to be blurred during the SSS pass.
lighting.diffuse += EvaluateTransmission(bsdfData, bsdfData.transmittance, NdotL, NdotV, LdotV, attenuation * lightData.diffuseScale);
}
// Save ALU by applying light and cookie colors only once.
lighting.diffuse *= color;
float NdotL = dot(N, L);
float LdotV = dot(L, V);
// NEWLITTODO: mixedThickness, transmission
bool mixedThicknessMode = HasFeatureFlag(bsdfData.materialFeatures, MATERIAL_FEATURE_FLAGS_TRANSMISSION_MODE_MIXED_THICKNESS)
&& NdotL < 0 && lightData.shadowIndex >= 0;
// Save the original version for the transmission code below.
int originalShadowIndex = lightData.shadowIndex;
if (mixedThicknessMode)
{
// Make sure we do not sample the shadow map twice.
lightData.shadowIndex = -1;
}
float3 color;
float attenuation;
// Restore the original shadow index.
lightData.shadowIndex = originalShadowIndex;
float intensity = max(0, attenuation * NdotL); // Warning: attenuation can be greater than 1 due to the inverse square attenuation (when position is close to light)
lighting.specular *= intensity * lightData.specularScale;
}
//NEWLITTODO : transmission
if (HasFeatureFlag(bsdfData.materialFeatures, MATERIALFEATUREFLAGS_STACK_LIT_TRANSMISSION))
{
float3 transmittance = bsdfData.transmittance;
if (mixedThicknessMode)
{
// Recompute transmittance using the thickness value computed from the shadow map.
// Compute the distance from the light to the back face of the object along the light direction.
float distBackFaceToLight = GetPunctualShadowClosestDistance(lightLoopContext.shadowContext, s_linear_clamp_sampler,
posInput.positionWS, lightData.shadowIndex, L, lightData.positionWS);
// Our subsurface scattering models use the semi-infinite planar slab assumption.
// Therefore, we need to find the thickness along the normal.
float distFrontFaceToLight = distances.x;
float thicknessInUnits = (distFrontFaceToLight - distBackFaceToLight) * -NdotL;
float thicknessInMeters = thicknessInUnits * _WorldScales[bsdfData.diffusionProfile].x;
float thicknessInMillimeters = thicknessInMeters * MILLIMETERS_PER_METER;
#if SHADEROPTIONS_USE_DISNEY_SSS
// We need to make sure it's not less than the baked thickness to minimize light leaking.
float thicknessDelta = max(0, thicknessInMillimeters - bsdfData.thickness);
float3 S = _ShapeParams[bsdfData.diffusionProfile].rgb;
// Approximate the decrease of transmittance by e^(-1/3 * dt * S).
#if 0
float3 expOneThird = exp(((-1.0 / 3.0) * thicknessDelta) * S);
#else
// Help the compiler.
float k = (-1.0 / 3.0) * LOG2_E;
float3 p = (k * thicknessDelta) * S;
float3 expOneThird = exp2(p);
#endif
transmittance *= expOneThird;
#else // SHADEROPTIONS_USE_DISNEY_SSS
// We need to make sure it's not less than the baked thickness to minimize light leaking.
thicknessInMillimeters = max(thicknessInMillimeters, bsdfData.thickness);
transmittance = ComputeTransmittanceJimenez(_HalfRcpVariancesAndWeights[bsdfData.diffusionProfile][0].rgb,
_HalfRcpVariancesAndWeights[bsdfData.diffusionProfile][0].a,
_HalfRcpVariancesAndWeights[bsdfData.diffusionProfile][1].rgb,
_HalfRcpVariancesAndWeights[bsdfData.diffusionProfile][1].a,
_TransmissionTintsAndFresnel0[bsdfData.diffusionProfile].rgb,
thicknessInMillimeters);
#endif // SHADEROPTIONS_USE_DISNEY_SSS
}
// Note: we do not modify the distance to the light, or the light angle for the back face.
// This is a performance-saving optimization which makes sense as long as the thickness is small.
// We use diffuse lighting for accumulation since it is going to be blurred during the SSS pass.
lighting.diffuse += EvaluateTransmission(bsdfData, transmittance, NdotL, NdotV, LdotV, attenuation * lightData.diffuseScale);
}
// Save ALU by applying light and cookie colors only once.
lighting.diffuse *= color;
bakeDiffuseLighting *= aoFactor.indirectAmbientOcclusion;
lighting.direct.diffuse *= aoFactor.directAmbientOcclusion;
// Subsurface scattering mdoe
uint texturingMode = (bsdfData.materialFeatures >> MATERIAL_FEATURE_FLAGS_SSS_TEXTURING_MODE_OFFSET) & 3;
float3 modifiedDiffuseColor = ApplySubsurfaceScatteringTexturingMode(texturingMode, bsdfData.diffuseColor);
// Apply the albedo to the direct diffuse lighting (only once). The indirect (baked)
diffuseLighting = bsdfData.diffuseColor * lighting.direct.diffuse + bakeDiffuseLighting;
diffuseLighting = modifiedDiffuseColor * lighting.direct.diffuse + bakeDiffuseLighting;
specularLighting = lighting.direct.specular + lighting.indirect.specularReflected;