#define LTC_LUT_SCALE ((LTC_LUT_SIZE - 1) * rcp(LTC_LUT_SIZE))
#define LTC_LUT_OFFSET (0.5 * rcp(LTC_LUT_SIZE))
#define MIN_N_DOT_V 0.0001 // The minimum value of 'NdotV'
// SSS parameters
#define SSS_N_PROFILES 8
#define SSS_LOW_THICKNESS 0.005 // 0.5 cm
struct PreLightData
{
// General
float NdotV; // Between 0.0001 and 1
float unNdotV; // Between -1 and 1
float NdotV; // Geometric version (not clamped)
// GGX iso
float ggxLambdaV;
float anisoGGXLambdaV;
// IBL
float3 iblDirWS; // Dominant specular direction, used for IBL in EvaluateBSDF_Env()
float3 iblDirWS; // Dominant specular direction, used for IBL in EvaluateBSDF_Env()
float3 specularFGD; // Store preconvole BRDF for both specular and diffuse
float3 specularFGD; // Store preconvoled BRDF for both specular and diffuse
float diffuseFGD;
// area light
{
PreLightData preLightData;
// General
float3 iblNormalWS = bsdfData.normalWS;
float NdotV = dot(bsdfData.normalWS, V);
float3 iblNormalWS = GetViewShiftedNormal(bsdfData.normalWS, V, NdotV, MIN_N_DOT_V);
preLightData.unNdotV = dot(bsdfData.normalWS, V);
// GetShiftedNdotV return a positive NdotV
// In case a material use negative normal for double sided lighting like Speedtree they need to do a new calculation
preLightData.NdotV = GetShiftedNdotV(iblNormalWS, V, preLightData.unNdotV);
preLightData.NdotV = NdotV; // Store the unaltered (geometric) version
NdotV = max(NdotV, MIN_N_DOT_V); // Use the modified (clamped) version
float3 iblR = reflect(-V, iblNormalWS);
preLightData.ggxLambdaV = GetSmithJointGGXLambdaV(preLightData.NdotV, bsdfData.roughness);
preLightData.ggxLambdaV = GetSmithJointGGXLambdaV(NdotV, bsdfData.roughness);
// GGX aniso
if (bsdfData.materialId == MATERIALID_LIT_ANISO)
preLightData.anisoGGXLambdaV = GetSmithJointGGXAnisoLambdaV(preLightData.TdotV, preLightData.BdotV, preLightData.NdotV, bsdfData.roughnessT, bsdfData.roughnessB);
preLightData.anisoGGXLambdaV = GetSmithJointGGXAnisoLambdaV(preLightData.TdotV, preLightData.BdotV, NdotV, bsdfData.roughnessT, bsdfData.roughnessB);
iblNormalWS = GetAnisotropicModifiedNormal(bsdfData.bitangentWS, iblNormalWS, V, bsdfData.anisotropy);
float3 anisoIblNormalWS = GetAnisotropicModifiedNormal(bsdfData.bitangentWS, iblNormalWS, V, bsdfData.anisotropy);
iblR = reflect(-V, anisoIblNormalWS);
// @Sébastien: I preserved the original behavior by creating 'anisoIblNormalWS', but,
// from the performance standpoint, it would be best to store the value in 'iblNormalWS'
// and then use it in GetSpecularDominantDir(). Please reconsider. :-) -Evgenii
GetPreIntegratedFGD(preLightData.NdotV, bsdfData.perceptualRoughness, bsdfData.fresnel0, preLightData.specularFGD, preLightData.diffuseFGD);
GetPreIntegratedFGD(NdotV, bsdfData.perceptualRoughness, bsdfData.fresnel0, preLightData.specularFGD, preLightData.diffuseFGD);
// We need to take into account the modified normal for faking anisotropic here.
float3 iblR = reflect(-V, iblNormalWS);
preLightData.iblDirWS = GetSpecularDominantDir(bsdfData.normalWS, iblR, bsdfData.roughness, preLightData.NdotV);
preLightData.iblDirWS = GetSpecularDominantDir(iblNormalWS, iblR, bsdfData.roughness, NdotV);
float theta = FastACos(preLightData.NdotV);
float theta = FastACos(NdotV);
float2 uv = LTC_LUT_OFFSET + LTC_LUT_SCALE * float2(bsdfData.perceptualRoughness, theta * INV_HALF_PI);
// Get the inverse LTC matrix for GGX
out float3 diffuseLighting,
out float3 specularLighting)
{
// Optimized math. Ref: PBR Diffuse Lighting for GGX + Smith Microsurfaces (slide 114).
float NdotV = preLightData.unNdotV; // This value must not be clamped
float NdotV = preLightData.NdotV; // Get the unaltered (geometric) version
// GCN Optimization: reference PBR Diffuse Lighting for GGX + Smith Microsurfaces
float invLenLV = rsqrt(abs(2.0 * LdotV + 2.0)); // invLenLV = rcp(length(L + V))
float invLenLV = rsqrt(abs(2 * LdotV + 2)); // invLenLV = rcp(length(L + V))
NdotV = max(NdotV, MIN_N_DOT_V); // Use the modified (clamped) version
float3 F = F_Schlick(bsdfData.fresnel0, LdotH);
bsdfData.roughnessB = ClampRoughnessForAnalyticalLights(bsdfData.roughnessB);
#ifdef LIT_USE_BSDF_PRE_LAMBDAV
Vis = V_SmithJointGGXAnisoLambdaV(preLightData.TdotV, preLightData.BdotV, preLightData. NdotV, TdotL, BdotL, NdotL,
Vis = V_SmithJointGGXAnisoLambdaV(preLightData.TdotV, preLightData.BdotV, NdotV, TdotL, BdotL, NdotL,
Vis = V_SmithJointGGXAniso(preLightData.TdotV, preLightData.BdotV, preLightData. NdotV, TdotL, BdotL, NdotL,
Vis = V_SmithJointGGXAniso(preLightData.TdotV, preLightData.BdotV, NdotV, TdotL, BdotL, NdotL,
bsdfData.roughnessT, bsdfData.roughnessB);
#endif
bsdfData.roughness = ClampRoughnessForAnalyticalLights(bsdfData.roughness);
#ifdef LIT_USE_BSDF_PRE_LAMBDAV
Vis = V_SmithJointGGX(NdotL, preLightData. NdotV, bsdfData.roughness, preLightData.ggxLambdaV);
Vis = V_SmithJointGGX(NdotL, NdotV, bsdfData.roughness, preLightData.ggxLambdaV);
Vis = V_SmithJointGGX(NdotL, preLightData. NdotV, bsdfData.roughness);
Vis = V_SmithJointGGX(NdotL, NdotV, bsdfData.roughness);
#endif
D = D_GGX(NdotH, bsdfData.roughness);
}
float diffuseTerm = Lambert();
#elif LIT_DIFFUSE_GGX_BRDF
float3 diffuseTerm = DiffuseGGX(bsdfData.diffuseColor, preLightData. NdotV, NdotL, NdotH, LdotV, bsdfData.perceptualRoughness);
float3 diffuseTerm = DiffuseGGX(bsdfData.diffuseColor, NdotV, NdotL, NdotH, LdotV, bsdfData.perceptualRoughness);
float diffuseTerm = DisneyDiffuse(preLightData. NdotV, NdotL, LdotH, bsdfData.perceptualRoughness);
float diffuseTerm = DisneyDiffuse(NdotV, NdotL, LdotH, bsdfData.perceptualRoughness);
#endif
diffuseLighting = bsdfData.diffuseColor * diffuseTerm;
uint sampleCount = 4096)
{
float3x3 localToWorld = float3x3(bsdfData.tangentWS, bsdfData.bitangentWS, bsdfData.normalWS);
float NdotV = max(preLightData.NdotV, MIN_N_DOT_V);
float3 acc = float3(0.0, 0.0, 0.0);
// Add some jittering on Hammersley2d
float LdotH = dot(L, H);
// Note: we call DisneyDiffuse that require to multiply by Albedo / PI. Divide by PI is already taken into account
// in weightOverPdf of ImportanceSampleLambert call.
float disneyDiffuse = DisneyDiffuse(preLightData. NdotV, NdotL, LdotH, bsdfData.perceptualRoughness);
float disneyDiffuse = DisneyDiffuse(NdotV, NdotL, LdotH, bsdfData.perceptualRoughness);
// diffuse Albedo is apply here as describe in ImportanceSampleLambert function
float4 val = SampleEnv(lightLoopContext, lightData.envIndex, L, 0);
uint sampleCount = 4096)
{
float3x3 localToWorld = float3x3(bsdfData.tangentWS, bsdfData.bitangentWS, bsdfData.normalWS);
float NdotV = max(preLightData.NdotV, MIN_N_DOT_V);
float3 acc = float3(0.0, 0.0, 0.0);
// Add some jittering on Hammersley2d
// GGX BRDF
if (bsdfData.materialId == MATERIALID_LIT_ANISO)
{
ImportanceSampleAnisoGGX(u, V, localToWorld, bsdfData.roughnessT, bsdfData.roughnessB, preLightData. NdotV, L, VdotH, NdotL, weightOverPdf);
ImportanceSampleAnisoGGX(u, V, localToWorld, bsdfData.roughnessT, bsdfData.roughnessB, NdotV, L, VdotH, NdotL, weightOverPdf);
ImportanceSampleGGX(u, V, localToWorld, bsdfData.roughness, preLightData. NdotV, L, VdotH, NdotL, weightOverPdf);
ImportanceSampleGGX(u, V, localToWorld, bsdfData.roughness, NdotV, L, VdotH, NdotL, weightOverPdf);
}