Felipe Lira
7 年前
当前提交
63f633bd
共有 44 个文件被更改,包括 758 次插入 和 119 次删除
-
18ScriptableRenderPipeline/LightweightPipeline/LWRP/Data/LightweightPipelineAsset.cs
-
37ScriptableRenderPipeline/LightweightPipeline/LWRP/Editor/LightweightAssetEditor.cs
-
120ScriptableRenderPipeline/LightweightPipeline/LWRP/LightweightPipeline.cs
-
2ScriptableRenderPipeline/LightweightPipeline/LWRP/LightweightPipelineUtils.cs
-
2ScriptableRenderPipeline/LightweightPipeline/LWRP/Shaders/LightweightBlit.shader
-
2ScriptableRenderPipeline/LightweightPipeline/LWRP/Shaders/LightweightCopyDepth.shader
-
18ScriptableRenderPipeline/LightweightPipeline/LWRP/Shaders/LightweightStandard.shader
-
4ScriptableRenderPipeline/LightweightPipeline/LWRP/Shaders/LightweightStandardParticles.shader
-
4ScriptableRenderPipeline/LightweightPipeline/LWRP/Shaders/LightweightStandardParticlesUnlit.shader
-
8ScriptableRenderPipeline/LightweightPipeline/LWRP/Shaders/LightweightStandardSimpleLighting.shader
-
4ScriptableRenderPipeline/LightweightPipeline/LWRP/Shaders/LightweightStandardTerrain.shader
-
4ScriptableRenderPipeline/LightweightPipeline/LWRP/Shaders/LightweightUnlit.shader
-
5Tests/GraphicsTests/RenderPipeline/LightweightPipeline/LightweightPipelineAsset.asset
-
6ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/LightweightPassLit.hlsl
-
4ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/LightweightPassMeta.hlsl
-
2ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/LightweightPassShadow.hlsl
-
4ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/InputBuiltin.hlsl
-
33ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/Shadows.hlsl
-
8ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary.meta
-
584ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/Lighting.hlsl
-
8ScriptableRenderPipeline/LightweightPipeline/LWRP/Shaders/LightweightShaderLibrary.meta
-
0/ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/LightweightPassLit.hlsl
-
0/ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/LightweightPassMeta.hlsl
-
0/ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/LightweightPassShadow.hlsl
-
0/ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/LightweightPassShadow.hlsl.meta
-
0/ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/LightweightPassMeta.hlsl.meta
-
0/ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/LightweightPassLit.hlsl.meta
-
0/ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/CoreFunctions.hlsl
-
0/ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/CoreFunctions.hlsl.meta
-
0/ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/Input.hlsl
-
0/ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/InputBuiltin.hlsl.meta
-
0/ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/Particles.hlsl.meta
-
0/ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/Shadows.hlsl.meta
-
0/ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/Lighting.hlsl.meta
-
0/ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/InputSurface.hlsl.meta
-
0/ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/Input.hlsl.meta
-
0/ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/Core.hlsl.meta
-
0/ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/InputBuiltin.hlsl
-
0/ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/InputSurface.hlsl
-
0/ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/Shadows.hlsl
-
0/ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/Particles.hlsl
-
0/ScriptableRenderPipeline/LightweightPipeline/LWRP/ShaderLibrary/Core.hlsl
|
|||
fileFormatVersion: 2 |
|||
guid: 2de5b472450204ae2853db2cb6a2540a |
|||
folderAsset: yes |
|||
DefaultImporter: |
|||
externalObjects: {} |
|||
userData: |
|||
assetBundleName: |
|||
assetBundleVariant: |
|
|||
#ifndef LIGHTWEIGHT_LIGHTING_INCLUDED |
|||
#define LIGHTWEIGHT_LIGHTING_INCLUDED |
|||
|
|||
#include "CoreRP/ShaderLibrary/Common.hlsl" |
|||
#include "CoreRP/ShaderLibrary/EntityLighting.hlsl" |
|||
#include "CoreRP/ShaderLibrary/ImageBasedLighting.hlsl" |
|||
#include "Core.hlsl" |
|||
#include "Shadows.hlsl" |
|||
|
|||
#ifdef NO_ADDITIONAL_LIGHTS |
|||
#undef _ADDITIONAL_LIGHTS |
|||
#endif |
|||
|
|||
// If lightmap is not defined than we evaluate GI (ambient + probes) from SH |
|||
// We might do it fully or partially in vertex to save shader ALU |
|||
#if !defined(LIGHTMAP_ON) |
|||
#ifdef SHADER_API_GLES |
|||
// Evaluates SH fully in vertex |
|||
#define EVALUATE_SH_VERTEX |
|||
#else |
|||
// Evaluates L2 SH in vertex and L0L1 in pixel |
|||
#define EVALUATE_SH_MIXED |
|||
#endif |
|||
#endif |
|||
|
|||
#ifdef LIGHTMAP_ON |
|||
#define OUTPUT_LIGHTMAP_UV(lightmapUV, lightmapScaleOffset, OUT) OUT.xy = lightmapUV.xy * lightmapScaleOffset.xy + lightmapScaleOffset.zw; |
|||
#define OUTPUT_SH(normalWS, OUT) |
|||
#else |
|||
#define OUTPUT_LIGHTMAP_UV(lightmapUV, lightmapScaleOffset, OUT) |
|||
#define OUTPUT_SH(normalWS, OUT) OUT.xyz = SampleSHVertex(normalWS) |
|||
#endif |
|||
|
|||
/////////////////////////////////////////////////////////////////////////////// |
|||
// Light Helpers // |
|||
/////////////////////////////////////////////////////////////////////////////// |
|||
|
|||
// Abstraction over Light input constants |
|||
struct LightInput |
|||
{ |
|||
float4 position; |
|||
half3 color; |
|||
half4 distanceAttenuation; |
|||
half4 spotDirection; |
|||
half4 spotAttenuation; |
|||
}; |
|||
|
|||
// Abstraction over Light shading data. |
|||
struct Light |
|||
{ |
|||
half3 direction; |
|||
half3 color; |
|||
half attenuation; |
|||
half realtimeAttenuation; |
|||
}; |
|||
|
|||
/////////////////////////////////////////////////////////////////////////////// |
|||
// Attenuation Functions / |
|||
/////////////////////////////////////////////////////////////////////////////// |
|||
half CookieAttenuation(float3 worldPos) |
|||
{ |
|||
#ifdef _MAIN_LIGHT_COOKIE |
|||
#ifdef _MAIN_LIGHT_DIRECTIONAL |
|||
float2 cookieUV = mul(_WorldToLight, float4(worldPos, 1.0)).xy; |
|||
return SAMPLE_TEXTURE2D(_MainLightCookie, sampler_MainLightCookie, cookieUV).a; |
|||
#elif defined(_MAIN_LIGHT_SPOT) |
|||
float4 projPos = mul(_WorldToLight, float4(worldPos, 1.0)); |
|||
float2 cookieUV = projPos.xy / projPos.w + 0.5; |
|||
return SAMPLE_TEXTURE2D(_MainLightCookie, sampler_MainLightCookie, cookieUV).a; |
|||
#endif // POINT LIGHT cookie not supported |
|||
#endif |
|||
|
|||
return 1; |
|||
} |
|||
|
|||
// Matches Unity Vanila attenuation |
|||
// Attenuation smoothly decreases to light range. |
|||
half DistanceAttenuation(half distanceSqr, half3 distanceAttenuation) |
|||
{ |
|||
// We use a shared distance attenuation for additional directional and puctual lights |
|||
// for directional lights attenuation will be 1 |
|||
half quadFalloff = distanceAttenuation.x; |
|||
half denom = distanceSqr * quadFalloff + 1.0; |
|||
half lightAtten = 1.0 / denom; |
|||
|
|||
// We need to smoothly fade attenuation to light range. We start fading linearly at 80% of light range |
|||
// Therefore: |
|||
// fadeDistance = (0.8 * 0.8 * lightRangeSq) |
|||
// smoothFactor = (lightRangeSqr - distanceSqr) / (lightRangeSqr - fadeDistance) |
|||
// We can rewrite that to fit a MAD by doing |
|||
// distanceSqr * (1.0 / (fadeDistanceSqr - lightRangeSqr)) + (-lightRangeSqr / (fadeDistanceSqr - lightRangeSqr) |
|||
// distanceSqr * distanceAttenuation.y + distanceAttenuation.z |
|||
half smoothFactor = saturate(distanceSqr * distanceAttenuation.y + distanceAttenuation.z); |
|||
return lightAtten * smoothFactor; |
|||
} |
|||
|
|||
half SpotAttenuation(half3 spotDirection, half3 lightDirection, half4 spotAttenuation) |
|||
{ |
|||
// Spot Attenuation with a linear falloff can be defined as |
|||
// (SdotL - cosOuterAngle) / (cosInnerAngle - cosOuterAngle) |
|||
// This can be rewritten as |
|||
// invAngleRange = 1.0 / (cosInnerAngle - cosOuterAngle) |
|||
// SdotL * invAngleRange + (-cosOuterAngle * invAngleRange) |
|||
// SdotL * spotAttenuation.x + spotAttenuation.y |
|||
|
|||
// If we precompute the terms in a MAD instruction |
|||
half SdotL = dot(spotDirection, lightDirection); |
|||
half atten = saturate(SdotL * spotAttenuation.x + spotAttenuation.y); |
|||
return atten * atten; |
|||
} |
|||
|
|||
half4 GetLightDirectionAndRealtimeAttenuation(LightInput lightInput, float3 positionWS) |
|||
{ |
|||
half4 directionAndAttenuation; |
|||
float3 posToLightVec = lightInput.position.xyz - positionWS * lightInput.position.w; |
|||
float distanceSqr = max(dot(posToLightVec, posToLightVec), FLT_MIN); |
|||
|
|||
directionAndAttenuation.xyz = half3(posToLightVec * rsqrt(distanceSqr)); |
|||
directionAndAttenuation.w = DistanceAttenuation(distanceSqr, lightInput.distanceAttenuation.xyz); |
|||
directionAndAttenuation.w *= SpotAttenuation(lightInput.spotDirection.xyz, directionAndAttenuation.xyz, lightInput.spotAttenuation); |
|||
return directionAndAttenuation; |
|||
} |
|||
|
|||
half4 GetMainLightDirectionAndRealtimeAttenuation(LightInput lightInput, float3 positionWS) |
|||
{ |
|||
half4 directionAndAttenuation; |
|||
|
|||
#if defined(_MAIN_LIGHT_DIRECTIONAL) |
|||
directionAndAttenuation = half4(lightInput.position.xyz, 1.0); |
|||
#else |
|||
directionAndAttenuation = GetLightDirectionAndRealtimeAttenuation(lightInput, positionWS); |
|||
#endif |
|||
|
|||
// Cookies and shadows are only computed for main light |
|||
directionAndAttenuation.w *= CookieAttenuation(positionWS); |
|||
directionAndAttenuation.w *= RealtimeShadowAttenuation(positionWS); |
|||
|
|||
return directionAndAttenuation; |
|||
} |
|||
|
|||
/////////////////////////////////////////////////////////////////////////////// |
|||
// Light Abstraction // |
|||
/////////////////////////////////////////////////////////////////////////////// |
|||
|
|||
Light GetMainLight(float3 positionWS) |
|||
{ |
|||
LightInput lightInput; |
|||
lightInput.position = _MainLightPosition; |
|||
lightInput.color = _MainLightColor.rgb; |
|||
lightInput.distanceAttenuation = _MainLightDistanceAttenuation; |
|||
lightInput.spotDirection = _MainLightSpotDir; |
|||
lightInput.spotAttenuation = _MainLightSpotAttenuation; |
|||
|
|||
half4 directionAndRealtimeAttenuation = GetMainLightDirectionAndRealtimeAttenuation(lightInput, positionWS); |
|||
|
|||
Light light; |
|||
light.direction = directionAndRealtimeAttenuation.xyz; |
|||
light.realtimeAttenuation = directionAndRealtimeAttenuation.w; |
|||
light.attenuation = MixRealtimeAndBakedOcclusion(light.realtimeAttenuation, lightInput.distanceAttenuation.w); |
|||
light.color = lightInput.color; |
|||
|
|||
return light; |
|||
} |
|||
|
|||
Light GetLight(int i, float3 positionWS) |
|||
{ |
|||
LightInput lightInput; |
|||
half4 indices = (i < 4) ? unity_4LightIndices0 : unity_4LightIndices1; |
|||
int index = (i < 4) ? i : i - 4; |
|||
int lightIndex = indices[index]; |
|||
lightInput.position = _AdditionalLightPosition[lightIndex]; |
|||
lightInput.color = _AdditionalLightColor[lightIndex].rgb; |
|||
lightInput.distanceAttenuation = _AdditionalLightDistanceAttenuation[lightIndex]; |
|||
lightInput.spotDirection = _AdditionalLightSpotDir[lightIndex]; |
|||
lightInput.spotAttenuation = _AdditionalLightSpotAttenuation[lightIndex]; |
|||
|
|||
half4 directionAndRealtimeAttenuation = GetLightDirectionAndRealtimeAttenuation(lightInput, positionWS); |
|||
|
|||
Light light; |
|||
light.direction = directionAndRealtimeAttenuation.xyz; |
|||
light.realtimeAttenuation = directionAndRealtimeAttenuation.w; |
|||
light.attenuation = MixRealtimeAndBakedOcclusion(light.realtimeAttenuation, lightInput.distanceAttenuation.w); |
|||
light.color = lightInput.color; |
|||
|
|||
return light; |
|||
} |
|||
|
|||
half GetPixelLightCount() |
|||
{ |
|||
return min(_AdditionalLightCount.x, unity_LightIndicesOffsetAndCount.y); |
|||
} |
|||
|
|||
/////////////////////////////////////////////////////////////////////////////// |
|||
// BRDF Functions // |
|||
/////////////////////////////////////////////////////////////////////////////// |
|||
|
|||
#define kDieletricSpec half4(0.04, 0.04, 0.04, 1.0 - 0.04) // standard dielectric reflectivity coef at incident angle (= 4%) |
|||
|
|||
struct BRDFData |
|||
{ |
|||
half3 diffuse; |
|||
half3 specular; |
|||
half perceptualRoughness; |
|||
half roughness; |
|||
half roughness2; |
|||
half grazingTerm; |
|||
}; |
|||
|
|||
half ReflectivitySpecular(half3 specular) |
|||
{ |
|||
#if (SHADER_TARGET < 30) |
|||
// SM2.0: instruction count limitation |
|||
return specular.r; // Red channel - because most metals are either monocrhome or with redish/yellowish tint |
|||
#else |
|||
return max(max(specular.r, specular.g), specular.b); |
|||
#endif |
|||
} |
|||
|
|||
half OneMinusReflectivityMetallic(half metallic) |
|||
{ |
|||
// We'll need oneMinusReflectivity, so |
|||
// 1-reflectivity = 1-lerp(dielectricSpec, 1, metallic) = lerp(1-dielectricSpec, 0, metallic) |
|||
// store (1-dielectricSpec) in kDieletricSpec.a, then |
|||
// 1-reflectivity = lerp(alpha, 0, metallic) = alpha + metallic*(0 - alpha) = |
|||
// = alpha - metallic * alpha |
|||
half oneMinusDielectricSpec = kDieletricSpec.a; |
|||
return oneMinusDielectricSpec - metallic * oneMinusDielectricSpec; |
|||
} |
|||
|
|||
inline void InitializeBRDFData(half3 albedo, half metallic, half3 specular, half smoothness, half alpha, out BRDFData outBRDFData) |
|||
{ |
|||
#ifdef _SPECULAR_SETUP |
|||
half reflectivity = ReflectivitySpecular(specular); |
|||
half oneMinusReflectivity = 1.0 - reflectivity; |
|||
|
|||
outBRDFData.diffuse = albedo * (half3(1.0h, 1.0h, 1.0h) - specular); |
|||
outBRDFData.specular = specular; |
|||
#else |
|||
|
|||
half oneMinusReflectivity = OneMinusReflectivityMetallic(metallic); |
|||
half reflectivity = 1.0 - oneMinusReflectivity; |
|||
|
|||
outBRDFData.diffuse = albedo * oneMinusReflectivity; |
|||
outBRDFData.specular = lerp(kDieletricSpec.rgb, albedo, metallic); |
|||
#endif |
|||
|
|||
outBRDFData.grazingTerm = saturate(smoothness + reflectivity); |
|||
outBRDFData.perceptualRoughness = PerceptualSmoothnessToPerceptualRoughness(smoothness); |
|||
outBRDFData.roughness = PerceptualRoughnessToRoughness(outBRDFData.perceptualRoughness); |
|||
outBRDFData.roughness2 = outBRDFData.roughness * outBRDFData.roughness; |
|||
|
|||
#ifdef _ALPHAPREMULTIPLY_ON |
|||
outBRDFData.diffuse *= alpha; |
|||
alpha = alpha * oneMinusReflectivity + reflectivity; |
|||
#endif |
|||
} |
|||
|
|||
half3 EnvironmentBRDF(BRDFData brdfData, half3 indirectDiffuse, half3 indirectSpecular, half fresnelTerm) |
|||
{ |
|||
half3 c = indirectDiffuse * brdfData.diffuse; |
|||
float surfaceReduction = 1.0 / (brdfData.roughness2 + 1.0); |
|||
c += surfaceReduction * indirectSpecular * lerp(brdfData.specular, brdfData.grazingTerm, fresnelTerm); |
|||
return c; |
|||
} |
|||
|
|||
// Based on Minimalist CookTorrance BRDF |
|||
// Implementation is slightly different from original derivation: http://www.thetenthplanet.de/archives/255 |
|||
// |
|||
// * NDF [Modified] GGX |
|||
// * Modified Kelemen and Szirmay-Kalos for Visibility term |
|||
// * Fresnel approximated with 1/LdotH |
|||
half3 DirectBDRF(BRDFData brdfData, half3 normalWS, half3 lightDirectionWS, half3 viewDirectionWS) |
|||
{ |
|||
#ifndef _SPECULARHIGHLIGHTS_OFF |
|||
half3 halfDir = SafeNormalize(lightDirectionWS + viewDirectionWS); |
|||
|
|||
half NoH = saturate(dot(normalWS, halfDir)); |
|||
half LoH = saturate(dot(lightDirectionWS, halfDir)); |
|||
|
|||
// GGX Distribution multiplied by combined approximation of Visibility and Fresnel |
|||
// See "Optimizing PBR for Mobile" from Siggraph 2015 moving mobile graphics course |
|||
// https://community.arm.com/events/1155 |
|||
half d = NoH * NoH * (brdfData.roughness2 - 1.h) + 1.00001h; |
|||
|
|||
half LoH2 = LoH * LoH; |
|||
half specularTerm = brdfData.roughness2 / ((d * d) * max(0.1h, LoH2) * (brdfData.roughness + 0.5h) * 4); |
|||
|
|||
// on mobiles (where half actually means something) denominator have risk of overflow |
|||
// clamp below was added specifically to "fix" that, but dx compiler (we convert bytecode to metal/gles) |
|||
// sees that specularTerm have only non-negative terms, so it skips max(0,..) in clamp (leaving only min(100,...)) |
|||
#if defined (SHADER_API_MOBILE) |
|||
specularTerm = specularTerm - HALF_MIN; |
|||
specularTerm = clamp(specularTerm, 0.0, 100.0); // Prevent FP16 overflow on mobiles |
|||
#endif |
|||
|
|||
half3 color = specularTerm * brdfData.specular + brdfData.diffuse; |
|||
return color; |
|||
#else |
|||
return brdfData.diffuse; |
|||
#endif |
|||
} |
|||
|
|||
/////////////////////////////////////////////////////////////////////////////// |
|||
// Global Illumination // |
|||
/////////////////////////////////////////////////////////////////////////////// |
|||
|
|||
// Samples SH L0, L1 and L2 terms |
|||
half3 SampleSH(half3 normalWS) |
|||
{ |
|||
// LPPV is not supported in Ligthweight Pipeline |
|||
real4 SHCoefficients[7]; |
|||
SHCoefficients[0] = unity_SHAr; |
|||
SHCoefficients[1] = unity_SHAg; |
|||
SHCoefficients[2] = unity_SHAb; |
|||
SHCoefficients[3] = unity_SHBr; |
|||
SHCoefficients[4] = unity_SHBg; |
|||
SHCoefficients[5] = unity_SHBb; |
|||
SHCoefficients[6] = unity_SHC; |
|||
|
|||
return max(half3(0, 0, 0), SampleSH9(SHCoefficients, normalWS)); |
|||
} |
|||
|
|||
// SH Vertex Evaluation. Depending on target SH sampling might be |
|||
// done completely per vertex or mixed with L2 term per vertex and L0, L1 |
|||
// per pixel. See SampleSHPixel |
|||
half3 SampleSHVertex(half3 normalWS) |
|||
{ |
|||
#if defined(EVALUATE_SH_VERTEX) |
|||
return max(half3(0, 0, 0), SampleSH(normalWS)); |
|||
#elif defined(EVALUATE_SH_MIXED) |
|||
// no max since this is only L2 contribution |
|||
return SHEvalLinearL2(normalWS, unity_SHBr, unity_SHBg, unity_SHBb, unity_SHC); |
|||
#endif |
|||
|
|||
// Fully per-pixel. Nothing to compute. |
|||
return half3(0.0, 0.0, 0.0); |
|||
} |
|||
|
|||
// SH Pixel Evaluation. Depending on target SH sampling might be done |
|||
// mixed or fully in pixel. See SampleSHVertex |
|||
half3 SampleSHPixel(half3 L2Term, half3 normalWS) |
|||
{ |
|||
#ifdef EVALUATE_SH_MIXED |
|||
half3 L0L1Term = SHEvalLinearL0L1(normalWS, unity_SHAr, unity_SHAg, unity_SHAb); |
|||
return max(half3(0, 0, 0), L2Term + L0L1Term); |
|||
#endif |
|||
|
|||
// Default: Evaluate SH fully per-pixel |
|||
return SampleSH(normalWS); |
|||
} |
|||
|
|||
// Sample baked lightmap. Non-Direction and Directional if available. |
|||
// Realtime GI is not supported. |
|||
half3 SampleLightmap(float2 lightmapUV, half3 normalWS) |
|||
{ |
|||
#ifdef UNITY_LIGHTMAP_FULL_HDR |
|||
bool encodedLightmap = false; |
|||
#else |
|||
bool encodedLightmap = true; |
|||
#endif |
|||
|
|||
// The shader library sample lightmap functions transform the lightmap uv coords to apply bias and scale. |
|||
// However, lightweight pipeline already transformed those coords in vertex. We pass half4(1, 1, 0, 0) and |
|||
// the compiler will optimize the transform away. |
|||
half4 transformCoords = half4(1, 1, 0, 0); |
|||
|
|||
#ifdef DIRLIGHTMAP_COMBINED |
|||
return SampleDirectionalLightmap(TEXTURE2D_PARAM(unity_Lightmap, samplerunity_Lightmap), |
|||
TEXTURE2D_PARAM(unity_LightmapInd, samplerunity_Lightmap), |
|||
lightmapUV, transformCoords, normalWS, encodedLightmap); |
|||
#else |
|||
return SampleSingleLightmap(TEXTURE2D_PARAM(unity_Lightmap, samplerunity_Lightmap), lightmapUV, transformCoords, encodedLightmap); |
|||
#endif |
|||
} |
|||
|
|||
// We either sample GI from baked lightmap or from probes. |
|||
// If lightmap: sampleData.xy = lightmapUV |
|||
// If probe: sampleData.xyz = L2 SH terms |
|||
half3 SampleGI(float4 sampleData, half3 normalWS) |
|||
{ |
|||
#ifdef LIGHTMAP_ON |
|||
return SampleLightmap(sampleData.xy, normalWS); |
|||
#endif |
|||
|
|||
// If lightmap is not enabled we sample GI from SH |
|||
return SampleSHPixel(sampleData.xyz, normalWS); |
|||
} |
|||
|
|||
half3 GlossyEnvironmentReflection(half3 reflectVector, half perceptualRoughness, half occlusion) |
|||
{ |
|||
#if !defined(_GLOSSYREFLECTIONS_OFF) |
|||
half mip = PerceptualRoughnessToMipmapLevel(perceptualRoughness); |
|||
half4 encodedIrradiance = SAMPLE_TEXTURECUBE_LOD(unity_SpecCube0, samplerunity_SpecCube0, reflectVector, mip); |
|||
|
|||
#if !defined(UNITY_USE_NATIVE_HDR) |
|||
half3 irradiance = DecodeHDREnvironment(encodedIrradiance, unity_SpecCube0_HDR); |
|||
#else |
|||
half3 irradiance = encodedIrradiance.rbg; |
|||
#endif |
|||
|
|||
return irradiance * occlusion; |
|||
#endif // GLOSSY_REFLECTIONS |
|||
|
|||
return _GlossyEnvironmentColor.rgb * occlusion; |
|||
} |
|||
|
|||
half3 SubtractDirectMainLightFromLightmap(Light mainLight, half3 normalWS, half3 bakedGI) |
|||
{ |
|||
#if defined(_MAIN_LIGHT_DIRECTIONAL) && defined(_MIXED_LIGHTING_SUBTRACTIVE) && defined(LIGHTMAP_ON) && defined(_SHADOWS_ENABLED) |
|||
// Let's try to make realtime shadows work on a surface, which already contains |
|||
// baked lighting and shadowing from the main sun light. |
|||
// Summary: |
|||
// 1) Calculate possible value in the shadow by subtracting estimated light contribution from the places occluded by realtime shadow: |
|||
// a) preserves other baked lights and light bounces |
|||
// b) eliminates shadows on the geometry facing away from the light |
|||
// 2) Clamp against user defined ShadowColor. |
|||
// 3) Pick original lightmap value, if it is the darkest one. |
|||
|
|||
|
|||
// 1) Gives good estimate of illumination as if light would've been shadowed during the bake. |
|||
// Preserves bounce and other baked lights |
|||
// No shadows on the geometry facing away from the light |
|||
half shadowStrength = _ShadowData.x; |
|||
half NdotL = saturate(dot(mainLight.direction, normalWS)); |
|||
half3 lambert = mainLight.color * NdotL; |
|||
half3 estimatedLightContributionMaskedByInverseOfShadow = lambert * (1.0 - mainLight.realtimeAttenuation); |
|||
half3 subtractedLightmap = bakedGI - estimatedLightContributionMaskedByInverseOfShadow; |
|||
|
|||
// 2) Allows user to define overall ambient of the scene and control situation when realtime shadow becomes too dark. |
|||
half3 realtimeShadow = max(subtractedLightmap, _SubtractiveShadowColor.xyz); |
|||
realtimeShadow = lerp(bakedGI, realtimeShadow, shadowStrength); |
|||
|
|||
// 3) Pick darkest color |
|||
return min(bakedGI, realtimeShadow); |
|||
#endif |
|||
|
|||
return bakedGI; |
|||
} |
|||
|
|||
half3 GlobalIllumination(BRDFData brdfData, half3 bakedGI, half occlusion, half3 normalWS, half3 viewDirectionWS) |
|||
{ |
|||
half3 reflectVector = reflect(-viewDirectionWS, normalWS); |
|||
half fresnelTerm = Pow4(1.0 - saturate(dot(normalWS, viewDirectionWS))); |
|||
|
|||
half3 indirectDiffuse = bakedGI * occlusion; |
|||
half3 indirectSpecular = GlossyEnvironmentReflection(reflectVector, brdfData.perceptualRoughness, occlusion); |
|||
|
|||
return EnvironmentBRDF(brdfData, indirectDiffuse, indirectSpecular, fresnelTerm); |
|||
} |
|||
|
|||
/////////////////////////////////////////////////////////////////////////////// |
|||
// Lighting Functions // |
|||
/////////////////////////////////////////////////////////////////////////////// |
|||
half3 LightingLambert(half3 lightColor, half3 lightDir, half3 normal) |
|||
{ |
|||
half NdotL = saturate(dot(normal, lightDir)); |
|||
return lightColor * NdotL; |
|||
} |
|||
|
|||
half3 LightingSpecular(half3 lightColor, half3 lightDir, half3 normal, half3 viewDir, half4 specularGloss, half shininess) |
|||
{ |
|||
half3 halfVec = SafeNormalize(lightDir + viewDir); |
|||
half NdotH = saturate(dot(normal, halfVec)); |
|||
half3 specularReflection = specularGloss.rgb * pow(NdotH, shininess) * specularGloss.a; |
|||
return lightColor * specularReflection; |
|||
} |
|||
|
|||
half3 LightingPhysicallyBased(BRDFData brdfData, half3 lightColor, half3 lightDirectionWS, half lightAttenuation, half3 normalWS, half3 viewDirectionWS) |
|||
{ |
|||
half NdotL = saturate(dot(normalWS, lightDirectionWS)); |
|||
half3 radiance = lightColor * (lightAttenuation * NdotL); |
|||
return DirectBDRF(brdfData, normalWS, lightDirectionWS, viewDirectionWS) * radiance; |
|||
} |
|||
|
|||
half3 LightingPhysicallyBased(BRDFData brdfData, Light light, half3 normalWS, half3 viewDirectionWS) |
|||
{ |
|||
return LightingPhysicallyBased(brdfData, light.color, light.direction, light.attenuation, normalWS, viewDirectionWS); |
|||
} |
|||
|
|||
half3 VertexLighting(float3 positionWS, half3 normalWS) |
|||
{ |
|||
half3 vertexLightColor = half3(0.0, 0.0, 0.0); |
|||
|
|||
#if defined(_VERTEX_LIGHTS) |
|||
int vertexLightStart = _AdditionalLightCount.x; |
|||
int vertexLightEnd = min(_AdditionalLightCount.y, unity_LightIndicesOffsetAndCount.y); |
|||
for (int lightIter = vertexLightStart; lightIter < vertexLightEnd; ++lightIter) |
|||
{ |
|||
Light light = GetLight(lightIter, positionWS); |
|||
|
|||
half3 lightColor = light.color * light.realtimeAttenuation; |
|||
vertexLightColor += LightingLambert(lightColor, light.direction, normalWS); |
|||
} |
|||
#endif |
|||
|
|||
return vertexLightColor; |
|||
} |
|||
|
|||
/////////////////////////////////////////////////////////////////////////////// |
|||
// Fragment Functions // |
|||
// Used by ShaderGraph and others builtin renderers // |
|||
/////////////////////////////////////////////////////////////////////////////// |
|||
half4 LightweightFragmentPBR(float3 positionWS, half3 normalWS, half3 viewDirectionWS, |
|||
half3 bakedGI, half3 vertexLighting, half3 albedo, half metallic, half3 specular, |
|||
half smoothness, half occlusion, half3 emission, half alpha) |
|||
{ |
|||
BRDFData brdfData; |
|||
InitializeBRDFData(albedo, metallic, specular, smoothness, alpha, brdfData); |
|||
|
|||
Light mainLight = GetMainLight(positionWS); |
|||
bakedGI = SubtractDirectMainLightFromLightmap(mainLight, normalWS, bakedGI); |
|||
half3 color = GlobalIllumination(brdfData, bakedGI, occlusion, normalWS, viewDirectionWS); |
|||
color += LightingPhysicallyBased(brdfData, mainLight, normalWS, viewDirectionWS); |
|||
|
|||
#ifdef _ADDITIONAL_LIGHTS |
|||
int pixelLightCount = GetPixelLightCount(); |
|||
for (int i = 0; i < pixelLightCount; ++i) |
|||
{ |
|||
Light light = GetLight(i, positionWS); |
|||
color += LightingPhysicallyBased(brdfData, light, normalWS, viewDirectionWS); |
|||
} |
|||
#endif |
|||
|
|||
color += vertexLighting * brdfData.diffuse; |
|||
color += emission; |
|||
return half4(color, alpha); |
|||
} |
|||
|
|||
half4 LightweightFragmentLambert(float3 positionWS, half3 normalWS, half3 viewDirectionWS, |
|||
half fogFactor, half3 bakedGI, half3 diffuse, half3 emission, half alpha) |
|||
{ |
|||
half3 lightDirection; |
|||
|
|||
Light mainLight = GetMainLight(positionWS); |
|||
half3 indirectDiffuse = SubtractDirectMainLightFromLightmap(mainLight, normalWS, bakedGI); |
|||
half3 lambert = LightingLambert(mainLight.color, mainLight.direction, normalWS); |
|||
half3 diffuseColor = lambert * mainLight.attenuation + indirectDiffuse; |
|||
|
|||
#ifdef _ADDITIONAL_LIGHTS |
|||
int pixelLightCount = GetPixelLightCount(); |
|||
for (int i = 0; i < pixelLightCount; ++i) |
|||
{ |
|||
Light light = GetLight(i, positionWS); |
|||
half3 attenuatedLightColor = light.color * light.attenuation; |
|||
diffuseColor += LightingLambert(attenuatedLightColor, lightDirection, normalWS); |
|||
} |
|||
#endif |
|||
|
|||
half3 finalColor = diffuseColor * diffuse + emission; |
|||
|
|||
ApplyFog(finalColor, fogFactor); |
|||
return half4(finalColor, alpha); |
|||
} |
|||
|
|||
half4 LightweightFragmentBlinnPhong(float3 positionWS, half3 normalWS, half3 viewDirectionWS, |
|||
half fogFactor, half3 bakedGI, half3 diffuse, half4 specularGloss, half shininess, half3 emission, half alpha) |
|||
{ |
|||
half3 lightDirection; |
|||
|
|||
Light mainLight = GetMainLight(positionWS); |
|||
half3 indirectDiffuse = SubtractDirectMainLightFromLightmap(mainLight, normalWS, bakedGI); |
|||
|
|||
half3 attenuatedLightColor = mainLight.color * mainLight.attenuation; |
|||
half3 diffuseColor = indirectDiffuse + LightingLambert(attenuatedLightColor, mainLight.direction, normalWS); |
|||
half3 specularColor = LightingSpecular(attenuatedLightColor, mainLight.direction, normalWS, viewDirectionWS, specularGloss, shininess); |
|||
|
|||
#ifdef _ADDITIONAL_LIGHTS |
|||
int pixelLightCount = GetPixelLightCount(); |
|||
for (int i = 0; i < pixelLightCount; ++i) |
|||
{ |
|||
Light light = GetLight(i, positionWS); |
|||
half3 attenuatedLightColor = light.color * light.attenuation; |
|||
diffuseColor += LightingLambert(attenuatedLightColor, light.direction, normalWS); |
|||
specularColor += LightingSpecular(attenuatedLightColor, light.direction, normalWS, viewDirectionWS, specularGloss, shininess); |
|||
} |
|||
#endif |
|||
|
|||
half3 finalColor = diffuseColor * diffuse + emission; |
|||
finalColor += specularColor; |
|||
|
|||
ApplyFog(finalColor, fogFactor); |
|||
return half4(finalColor, alpha); |
|||
} |
|||
#endif |
|
|||
fileFormatVersion: 2 |
|||
guid: 2de5b472450204ae2853db2cb6a2540a |
|||
folderAsset: yes |
|||
DefaultImporter: |
|||
externalObjects: {} |
|||
userData: |
|||
assetBundleName: |
|||
assetBundleVariant: |
撰写
预览
正在加载...
取消
保存
Reference in new issue