ApplyDepthOffsetAttribute(depthOffset, input);
#endif
float alpha = GetSurfaceData(input, layerTexCoord, surfaceData);
// We perform the conversion to world of the normalTS outside of the GetSurfaceData
// so it allow us to correctly deal with detail normal map and optimize the code for the layered shaders
float3 normalTS;
float alpha = GetSurfaceData(input, layerTexCoord, surfaceData, normalTS);
surfaceData.normalWS = TransformTangentToWorld(normalTS, input.tangentToWorld);
// Caution: surfaceData must be fully initialize before calling GetBuiltinData
GetBuiltinData(input, surfaceData, alpha, depthOffset, builtinData);
}
outWeights[0] = left;
}
float3 BlendLayeredColor(float3 rgb0, float3 rgb1, float3 rgb2, float3 rgb3, float weight[4])
float3 BlendLayeredFloat3(float3 x0, float3 x1, float3 x2, float3 x3, float weight[4])
result = rgb0 * weight[0] + rgb1 * weight[1];
result = x0 * weight[0] + x1 * weight[1];
result += (rgb2 * weight[2]);
result += (x2 * weight[2]);
result += rgb3 * weight[3];
result += x3 * weight[3];
float3 BlendLayeredNormal(float3 normal0, float3 normal1, float3 normal2, float3 normal3, float weight[4])
{
float3 result = float3(0.0, 0.0, 0.0);
result = normal0 * weight[0] + normal1 * weight[1];
#if _LAYER_COUNT >= 3
result += normal2 * weight[2];
#endif
#if _LAYER_COUNT >= 4
result += normal3 * weight[3];
#endif
return normalize(result);
}
float BlendLayeredScalar(float x0, float x1, float x2, float x3, float weight[4])
{
float result = 0.0;
}
#define SURFACEDATA_BLEND_COLOR(surfaceData, name, mask) BlendLayeredColor(surfaceData##0.##name, surfaceData##1.##name, surfaceData##2.##name, surfaceData##3.##name, mask);
#define SURFACEDATA_BLEND_NORMAL(surfaceData, name, mask) BlendLayeredNormal(surfaceData##0.##name, surfaceData##1.##name, surfaceData##2.##name, surfaceData##3.##name, mask);
#define SURFACEDATA_BLEND_COLOR(surfaceData, name, mask) BlendLayeredFloat3(surfaceData##0.##name, surfaceData##1.##name, surfaceData##2.##name, surfaceData##3.##name, mask);
#define SURFACEDATA_BLEND_SCALAR(surfaceData, name, mask) BlendLayeredScalar(surfaceData##0.##name, surfaceData##1.##name, surfaceData##2.##name, surfaceData##3.##name, mask);
#define PROP_BLEND_SCALAR(name, mask) BlendLayeredScalar(name##0, name##1, name##2, name##3, mask);
SurfaceData surfaceData1;
SurfaceData surfaceData2;
SurfaceData surfaceData3;
float alpha0 = GetSurfaceData0(input, layerTexCoord, surfaceData0);
float alpha1 = GetSurfaceData1(input, layerTexCoord, surfaceData1);
float alpha2 = GetSurfaceData2(input, layerTexCoord, surfaceData2);
float alpha3 = GetSurfaceData3(input, layerTexCoord, surfaceData3);
float3 normalTS0;
float3 normalTS1;
float3 normalTS2;
float3 normalTS3;
float alpha0 = GetSurfaceData0(input, layerTexCoord, surfaceData0, normalTS0);
float alpha1 = GetSurfaceData1(input, layerTexCoord, surfaceData1, normalTS1);
float alpha2 = GetSurfaceData2(input, layerTexCoord, surfaceData2, normalTS2);
float alpha3 = GetSurfaceData3(input, layerTexCoord, surfaceData3, normalTS3);
// Mask Values : Layer 1, 2, 3 are r, g, b
float3 maskValues = SAMPLE_TEXTURE2D(_LayerMaskMap, sampler_LayerMaskMap, input.texCoord0).rgb;
surfaceData.baseColor = SURFACEDATA_BLEND_COLOR(surfaceData, baseColor, weights);
surfaceData.specularOcclusion = SURFACEDATA_BLEND_SCALAR(surfaceData, specularOcclusion, weights);
// Note: for normal map (in tangent space) it is possible to have better performance
// by blending in tangent space then transform to world and apply flip.
// Sadly this require a specific path (without taking into account that there is detail normal map)
// mean it add an extra cost of maintenance. We chose to not do this optimization in favor
// of simpler code and in the future will rely on shader graph to create optimize code.
surfaceData.normalWS = SURFACEDATA_BLEND_NORMAL(surfaceData, normalWS, weights);
float3 normalTS;
#if defined(_HEIGHT_BASED_BLEND)
float _InheritBaseLayer0 = 1.0f; // Default value for lerp when all weights but base layer are zero.
// Compute the combined inheritance factor of layers 1,2 and 3
float inheritFactor = PROP_BLEND_SCALAR(_InheritBaseLayer, weights);
float3 vertexNormalTS = float3(0.0, 0.0, 1.0);
// The idea here is to lerp toward vertex normal. This way when we don't want to inherit, we will combine layer 1/2/3 normal with a vertex normal which is neutral.
float3 baseLayerNormalTS = normalize(lerp(vertexNormalTS, normalTS0, inheritFactor));
// Blend layer 1/2/3 normals before combining to the base layer. Again we need to have a neutral value for base layer (vertex normal) in case all weights are zero.
float3 layersNormalTS = BlendLayeredFloat3(vertexNormalTS, normalTS1, normalTS2, normalTS3, weights);
normalTS = BlendNormalRNM(baseLayerNormalTS, layersNormalTS);
#else
normalTS = BlendLayeredFloat3(normalTS0, normalTS1, normalTS2, normalTS3, weights);
#endif
surfaceData.normalWS = TransformTangentToWorld(normalTS, input.tangentToWorld);
// Init other unused parameter
surfaceData.materialId = 0;