浏览代码

Implement fake horizon clipping

/Branch_Batching2
Evgenii Golubev 8 年前
当前提交
4cdf5753
共有 1 个文件被更改,包括 14 次插入27 次删除
  1. 41
      Assets/ScriptableRenderPipeline/ShaderLibrary/AreaLighting.hlsl

41
Assets/ScriptableRenderPipeline/ShaderLibrary/AreaLighting.hlsl


// N.b.: this function accounts for horizon clipping.
float DiffuseSphereLightIrradiance(float sinSqSigma, float cosOmega)
{
// Clamp to avoid visual artifacts.
sinSqSigma = min(sinSqSigma, 0.999);
#if 0 // Ref: Area Light Sources for Real-Time Graphics, page 4 (1996).
float sinSqOmega = saturate(1 - cosOmega * cosOmega);
float cosSqSigma = saturate(1 - sinSqSigma);

float omega = acos(cosOmega);
float gamma = asin(sinGamma);
// if (omega >= HALF_PI + sigma)
// {
// // Full horizon occlusion (case #4). Handled outside this function.
// return 0;
// }
if (omega >= HALF_PI + sigma)
{
// Full horizon occlusion (case #4).
return 0;
}
float e = sinSqSigma * cosOmega;

// Expects non-normalized vertex positions.
float PolygonIrradiance(float4x3 L)
{
[branch]
if (L[0].z < 0 && L[1].z < 0 && L[2].z < 0 && L[3].z < 0)
{
// The light is below the horizon.
return 0;
}
[unroll]
for (int i = 0; i < 4; i++)
{

F += INV_TWO_PI * ComputeEdgeFactor(V1, V2);
}
// Clamp invalid values (visual artifacts otherwise).
float sinSqSigma = min(sqrt(f2), 0.999);
float sinSqSigma = sqrt(f2);
// We use a numerical fit for the above found with Mathematica.
// t = Flatten[Table[{x, y, f[x, y]}, {x, 0, 0.999999, 0.001}, {y, -0.999999, 0.999999, 0.002}], 1]
// m = NonlinearModelFit[t, x * (1 + y) * (a * x + b * y + c * x * y), {a, b, c}, {x, y}]
// The absolute error is quite large (around 0.02). We would like to find a better approximation.
float z = (x + x * y) * (0.370404036340287 * x + 0.5151639656054547 * (1 - 0.7648559657303381 * x) * y);
float b = (x + x * y) * 0.5; // Bilinear approximation
return z; // Do not saturate this
// float s = (sqrt(2) * x - 1) * y; // Compute the falloff from (0.707, 0)
// float t = (s * s) * (s * s); // It will remove most of the bleeding artifacts
float b = (x + x * y) * 0.5; // Bilinear approximation
float z = b * sqrt(x); // Area light approximation
float c = z * z; // Perform horizon clipping
float h = saturate(saturate(L[0].z) + saturate(L[1].z) + saturate(L[2].z) + saturate(L[3].z));
// return lerp(z, b, t); // Perform feathering of 'z' to avoid sharp transitions
return lerp(z, c, 1 - h);
#endif
#else
// 1. ClipQuadToHorizon

正在加载...
取消
保存