// Ref: http://jcgt.org/published/0003/02/01/paper.pdf
// Encode with Oct, this function work with any size of output
// return float between [-1, 1]
float2 PackNormalOctEncode(float3 v)
float2 PackNormalOctEncode(float3 n)
float l1norm = abs(v.x) + abs(v.y) + abs(v.z);
float2 res0 = v.xy * (1.0f / l1norm);
float l1norm = abs(n.x) + abs(n.y) + abs(n.z);
float2 res0 = n.xy * (1.0 / l1norm);
float2 val = 1.0f - abs(res0.yx);
return (v.zz < float2(0.0f, 0.0f) ? (res0 >= 0.0f ? val : -val) : res0);
float2 val = 1.0 - abs(res0.yx);
return (n.zz < float2(0.0, 0.0) ? (res0 >= 0.0 ? val : -val) : res0);
float3 UnpackNormalOctEncode(float x, float y)
float3 UnpackNormalOctEncode(float2 f)
float3 v = float3(x, y, 1.0f - abs(x) - abs(y));
float3 n = float3(f.x, f.y, 1.0 - abs(f.x) - abs(f.y));
float2 val = 1.0f - abs(v.yx);
v.xy = (v.zz < float2(0.0f, 0.0f) ? (v.xy >= 0.0f ? val : -val) : v.xy);
float2 val = 1.0 - abs(n.yx);
return normalize(v);
return normalize(n);
normal.xy = packednormal.wy * 2 - 1;
normal.xy = packednormal.wy * 2.0 - 1.0;
normal.z = sqrt(1 - saturate(dot(normal.xy, normal.xy)));
return normal;
}
return result * (1.0 / float2(255.0, 255.0));
}
//-----------------------------------------------------------------------------
// Encode a float in [0..1] and an int in [0..maxi - 1] as a float [0..1] to be store in log2(precision) bit
// maxi must be a power of two and define the number of bit dedicated 0..1 to the int part (log2(maxi))
// Example: precision is 256.0, maxi is 2, i is [0..1] encode on 1 bit. f is [0..1] encode on 7 bit.
// Example: precision is 256.0, maxi is 4, i is [0..3] encode on 2 bit. f is [0..1] encode on 6 bit.
// Example: precision is 256.0, maxi is 8, i is [0..7] encode on 3 bit. f is [0..1] encode on 5 bit.
// ...
// Example: precision is 1024.0, maxi is 8, i is [0..7] encode on 3 bit. f is [0..1] encode on 7 bit.
//...
float PackFloatInt(float f, int i, float maxi, float precision)
{
// Constant
float precisionMinusOne = precision - 1.0;
float t1 = ((precision / maxi) - 1.0) / precisionMinusOne;
float t2 = (precision / maxi) / precisionMinusOne;
return t1 * f + t2 * float(i);
}
void UnpackFloatInt(float val, float maxi, float precision, out float f, out int i)
{
// Constant
float precisionMinusOne = precision - 1.0;
float t1 = ((precision / maxi) - 1.0) / precisionMinusOne;
float t2 = (precision / maxi) / precisionMinusOne;
// extract integer part
i = int(val / t2);
// Now that we have i, solve formula in PackFloatInt for f
//f = (val - t2 * float(i)) / t1 => convert in mads form
f = (-t2 * float(i) + val) / t1;
}
// Define various variante for ease of read
float PackFloatInt8bit(float f, int i, float maxi)
{
return PackFloatInt(f, i, maxi, 255.0);
}
float UnpackFloatInt8bit(float val, float maxi, out float f, out int i)
{
UnpackFloatInt(val, maxi, 255.0, f, i);
}
float PackFloatInt10bit(float f, int i, float maxi)
{
return PackFloatInt(f, i, maxi, 1024.0);
}
float UnpackFloatInt10bit(float val, float maxi, out float f, out int i)
{
UnpackFloatInt(val, maxi, 1024.0, f, i);
}
float PackFloatInt16bit(float f, int i, float maxi)
{
return PackFloatInt(f, i, maxi, 65536.0);
}
float UnpackFloatInt16bit(float val, float maxi, out float f, out int i)
{
UnpackFloatInt(val, maxi, 65536.0, f, i);
}
#endif // UNITY_PACKING_INCLUDED