|
|
|
|
|
|
#ifndef LIGHTWEIGHT_LIGHTING_INCLUDED |
|
|
|
#define LIGHTWEIGHT_LIGHTING_INCLUDED |
|
|
|
|
|
|
|
#include "CoreRP/ShaderLibrary/Common.hlsl" |
|
|
|
#include "CoreRP/ShaderLibrary/EntityLighting.hlsl" |
|
|
|
#include "CoreRP/ShaderLibrary/ImageBasedLighting.hlsl" |
|
|
|
#include "Core.hlsl" |
|
|
|
#include "Shadows.hlsl" |
|
|
|
|
|
|
|
#ifdef NO_ADDITIONAL_LIGHTS |
|
|
|
#undef _ADDITIONAL_LIGHTS |
|
|
|
#endif |
|
|
|
|
|
|
|
// If lightmap is not defined than we evaluate GI (ambient + probes) from SH |
|
|
|
// We might do it fully or partially in vertex to save shader ALU |
|
|
|
#if !defined(LIGHTMAP_ON) |
|
|
|
#ifdef SHADER_API_GLES |
|
|
|
// Evaluates SH fully in vertex |
|
|
|
#define EVALUATE_SH_VERTEX |
|
|
|
#else |
|
|
|
// Evaluates L2 SH in vertex and L0L1 in pixel |
|
|
|
#define EVALUATE_SH_MIXED |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
#ifdef LIGHTMAP_ON |
|
|
|
#define OUTPUT_LIGHTMAP_UV(lightmapUV, lightmapScaleOffset, OUT) OUT.xy = lightmapUV.xy * lightmapScaleOffset.xy + lightmapScaleOffset.zw; |
|
|
|
#define OUTPUT_SH(normalWS, OUT) |
|
|
|
#else |
|
|
|
#define OUTPUT_LIGHTMAP_UV(lightmapUV, lightmapScaleOffset, OUT) |
|
|
|
#define OUTPUT_SH(normalWS, OUT) OUT.xyz = SampleSHVertex(normalWS) |
|
|
|
#endif |
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
// Light Helpers // |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
struct LightInput |
|
|
|
{ |
|
|
|
float4 position; |
|
|
|
half3 color; |
|
|
|
half subtractiveModeBakedOcclusion; |
|
|
|
half3 distanceAttenuation; |
|
|
|
half4 spotDirection; |
|
|
|
half4 spotAttenuation; |
|
|
|
}; |
|
|
|
|
|
|
|
LightInput GetMainLight() |
|
|
|
{ |
|
|
|
LightInput light; |
|
|
|
light.position = _MainLightPosition; |
|
|
|
light.color = _MainLightColor.rgb; |
|
|
|
light.subtractiveModeBakedOcclusion = _MainLightDistanceAttenuation.w; |
|
|
|
light.distanceAttenuation = _MainLightDistanceAttenuation.xyz; |
|
|
|
light.spotDirection = _MainLightSpotDir; |
|
|
|
light.spotAttenuation = _MainLightSpotAttenuation; |
|
|
|
return light; |
|
|
|
} |
|
|
|
|
|
|
|
LightInput GetLight(int i) |
|
|
|
{ |
|
|
|
LightInput light; |
|
|
|
half4 indices = (i < 4) ? unity_4LightIndices0 : unity_4LightIndices1; |
|
|
|
int index = (i < 4) ? i : i - 4; |
|
|
|
int lightIndex = indices[index]; |
|
|
|
light.position = _AdditionalLightPosition[lightIndex]; |
|
|
|
light.color = _AdditionalLightColor[lightIndex].rgb; |
|
|
|
light.subtractiveModeBakedOcclusion = _AdditionalLightDistanceAttenuation[lightIndex].w; |
|
|
|
light.distanceAttenuation = _AdditionalLightDistanceAttenuation[lightIndex].xyz; |
|
|
|
light.spotDirection = _AdditionalLightSpotDir[lightIndex]; |
|
|
|
light.spotAttenuation = _AdditionalLightSpotAttenuation[lightIndex]; |
|
|
|
return light; |
|
|
|
} |
|
|
|
|
|
|
|
half GetPixelLightCount() |
|
|
|
{ |
|
|
|
return min(_AdditionalLightCount.x, unity_LightIndicesOffsetAndCount.y); |
|
|
|
} |
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
// Global Illumination // |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
|
|
|
|
// Samples SH L0, L1 and L2 terms |
|
|
|
half3 SampleSH(half3 normalWS) |
|
|
|
{ |
|
|
|
// LPPV is not supported in Ligthweight Pipeline |
|
|
|
real4 SHCoefficients[7]; |
|
|
|
SHCoefficients[0] = unity_SHAr; |
|
|
|
SHCoefficients[1] = unity_SHAg; |
|
|
|
SHCoefficients[2] = unity_SHAb; |
|
|
|
SHCoefficients[3] = unity_SHBr; |
|
|
|
SHCoefficients[4] = unity_SHBg; |
|
|
|
SHCoefficients[5] = unity_SHBb; |
|
|
|
SHCoefficients[6] = unity_SHC; |
|
|
|
|
|
|
|
return SampleSH9(SHCoefficients, normalWS); |
|
|
|
} |
|
|
|
|
|
|
|
// SH Vertex Evaluation. Depending on target SH sampling might be |
|
|
|
// done completely per vertex or mixed with L2 term per vertex and L0, L1 |
|
|
|
// per pixel. See SampleSHPixel |
|
|
|
half3 SampleSHVertex(half3 normalWS) |
|
|
|
{ |
|
|
|
#if defined(EVALUATE_SH_VERTEX) |
|
|
|
return max(half3(0, 0, 0), SampleSH(normalWS)); |
|
|
|
#elif defined(EVALUATE_SH_MIXED) |
|
|
|
// no max since this is only L2 contribution |
|
|
|
return SHEvalLinearL2(normalWS, unity_SHBr, unity_SHBg, unity_SHBb, unity_SHC); |
|
|
|
#endif |
|
|
|
|
|
|
|
// Fully per-pixel. Nothing to compute. |
|
|
|
return half3(0.0, 0.0, 0.0); |
|
|
|
} |
|
|
|
|
|
|
|
// SH Pixel Evaluation. Depending on target SH sampling might be done |
|
|
|
// mixed or fully in pixel. See SampleSHVertex |
|
|
|
half3 SampleSHPixel(half3 L2Term, half3 normalWS) |
|
|
|
{ |
|
|
|
#ifdef EVALUATE_SH_MIXED |
|
|
|
half3 L0L1Term = SHEvalLinearL0L1(normalWS, unity_SHAr, unity_SHAg, unity_SHAb); |
|
|
|
return max(half3(0, 0, 0), L2Term + L0L1Term); |
|
|
|
#endif |
|
|
|
|
|
|
|
// Default: Evaluate SH fully per-pixel |
|
|
|
return max(half3(0, 0, 0), SampleSH(normalWS)); |
|
|
|
} |
|
|
|
|
|
|
|
// Sample baked lightmap. Non-Direction and Directional if available. |
|
|
|
// Realtime GI is not supported. |
|
|
|
half3 SampleLightmap(float2 lightmapUV, half3 normalWS) |
|
|
|
{ |
|
|
|
#ifdef UNITY_LIGHTMAP_FULL_HDR |
|
|
|
bool encodedLightmap = false; |
|
|
|
#else |
|
|
|
bool encodedLightmap = true; |
|
|
|
#endif |
|
|
|
|
|
|
|
// The shader library sample lightmap functions transform the lightmap uv coords to apply bias and scale. |
|
|
|
// However, lightweight pipeline already transformed those coords in vertex. We pass half4(1, 1, 0, 0) and |
|
|
|
// the compiler will optimize the transform away. |
|
|
|
half4 transformCoords = half4(1, 1, 0, 0); |
|
|
|
|
|
|
|
#ifdef DIRLIGHTMAP_COMBINED |
|
|
|
return SampleDirectionalLightmap(TEXTURE2D_PARAM(unity_Lightmap, samplerunity_Lightmap), |
|
|
|
TEXTURE2D_PARAM(unity_LightmapInd, samplerunity_Lightmap), |
|
|
|
lightmapUV, transformCoords, normalWS, encodedLightmap); |
|
|
|
#else |
|
|
|
return SampleSingleLightmap(TEXTURE2D_PARAM(unity_Lightmap, samplerunity_Lightmap), lightmapUV, transformCoords, encodedLightmap); |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
// We either sample GI from baked lightmap or from probes. |
|
|
|
// If lightmap: sampleData.xy = lightmapUV |
|
|
|
// If probe: sampleData.xyz = L2 SH terms |
|
|
|
half3 SampleGI(float4 sampleData, half3 normalWS) |
|
|
|
{ |
|
|
|
#ifdef LIGHTMAP_ON |
|
|
|
return SampleLightmap(sampleData.xy, normalWS); |
|
|
|
#endif |
|
|
|
|
|
|
|
// If lightmap is not enabled we sample GI from SH |
|
|
|
return SampleSHPixel(sampleData.xyz, normalWS); |
|
|
|
} |
|
|
|
|
|
|
|
half3 DiffuseGI(half3 indirectDiffuse, half3 lambert, half mainLightRealtimeAttenuation, half occlusion) |
|
|
|
{ |
|
|
|
// If shadows and mixed subtractive mode is enabled we need to remove direct |
|
|
|
// light contribution from lightmap from occluded pixels so we can have dynamic objects |
|
|
|
// casting shadows onto static correctly. |
|
|
|
#if defined(_MIXED_LIGHTING_SUBTRACTIVE) && defined(LIGHTMAP_ON) && defined(_SHADOWS_ENABLED) |
|
|
|
indirectDiffuse = SubtractDirectMainLightFromLightmap(indirectDiffuse, mainLightRealtimeAttenuation, lambert); |
|
|
|
#endif |
|
|
|
|
|
|
|
return indirectDiffuse * occlusion; |
|
|
|
} |
|
|
|
|
|
|
|
half3 GlossyEnvironmentReflection(half3 viewDirectionWS, half3 normalWS, half perceptualRoughness, half occlusion) |
|
|
|
{ |
|
|
|
half3 reflectVector = reflect(-viewDirectionWS, normalWS); |
|
|
|
|
|
|
|
#if !defined(_GLOSSYREFLECTIONS_OFF) |
|
|
|
half mip = PerceptualRoughnessToMipmapLevel(perceptualRoughness); |
|
|
|
half4 encodedIrradiance = SAMPLE_TEXTURECUBE_LOD(unity_SpecCube0, samplerunity_SpecCube0, reflectVector, mip); |
|
|
|
|
|
|
|
#if !defined(UNITY_USE_NATIVE_HDR) |
|
|
|
half3 irradiance = DecodeHDREnvironment(encodedIrradiance, unity_SpecCube0_HDR); |
|
|
|
#else |
|
|
|
half3 irradiance = encodedIrradiance.rbg; |
|
|
|
#endif |
|
|
|
|
|
|
|
return irradiance * occlusion; |
|
|
|
#endif // GLOSSY_REFLECTIONS |
|
|
|
|
|
|
|
return _GlossyEnvironmentColor.rgb * occlusion; |
|
|
|
} |
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
// BRDF Functions // |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
|
|
|
|
#define kDieletricSpec half4(0.04, 0.04, 0.04, 1.0 - 0.04) // standard dielectric reflectivity coef at incident angle (= 4%) |
|
|
|
|
|
|
|
struct BRDFData |
|
|
|
{ |
|
|
|
half3 diffuse; |
|
|
|
half3 specular; |
|
|
|
half perceptualRoughness; |
|
|
|
half roughness; |
|
|
|
half roughness2; |
|
|
|
half grazingTerm; |
|
|
|
}; |
|
|
|
|
|
|
|
half ReflectivitySpecular(half3 specular) |
|
|
|
{ |
|
|
|
#if (SHADER_TARGET < 30) |
|
|
|
// SM2.0: instruction count limitation |
|
|
|
return specular.r; // Red channel - because most metals are either monocrhome or with redish/yellowish tint |
|
|
|
#else |
|
|
|
return max(max(specular.r, specular.g), specular.b); |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
half OneMinusReflectivityMetallic(half metallic) |
|
|
|
{ |
|
|
|
// We'll need oneMinusReflectivity, so |
|
|
|
// 1-reflectivity = 1-lerp(dielectricSpec, 1, metallic) = lerp(1-dielectricSpec, 0, metallic) |
|
|
|
// store (1-dielectricSpec) in kDieletricSpec.a, then |
|
|
|
// 1-reflectivity = lerp(alpha, 0, metallic) = alpha + metallic*(0 - alpha) = |
|
|
|
// = alpha - metallic * alpha |
|
|
|
half oneMinusDielectricSpec = kDieletricSpec.a; |
|
|
|
return oneMinusDielectricSpec - metallic * oneMinusDielectricSpec; |
|
|
|
} |
|
|
|
|
|
|
|
inline void InitializeBRDFData(half3 albedo, half metallic, half3 specular, half smoothness, half alpha, out BRDFData outBRDFData) |
|
|
|
{ |
|
|
|
#ifdef _SPECULAR_SETUP |
|
|
|
half reflectivity = ReflectivitySpecular(specular); |
|
|
|
half oneMinusReflectivity = 1.0 - reflectivity; |
|
|
|
|
|
|
|
outBRDFData.diffuse = albedo * (half3(1.0h, 1.0h, 1.0h) - specular); |
|
|
|
outBRDFData.specular = specular; |
|
|
|
#else |
|
|
|
|
|
|
|
half oneMinusReflectivity = OneMinusReflectivityMetallic(metallic); |
|
|
|
half reflectivity = 1.0 - oneMinusReflectivity; |
|
|
|
|
|
|
|
outBRDFData.diffuse = albedo * oneMinusReflectivity; |
|
|
|
outBRDFData.specular = lerp(kDieletricSpec.rgb, albedo, metallic); |
|
|
|
#endif |
|
|
|
|
|
|
|
outBRDFData.grazingTerm = saturate(smoothness + reflectivity); |
|
|
|
outBRDFData.perceptualRoughness = 1.0h - smoothness; |
|
|
|
outBRDFData.roughness = outBRDFData.perceptualRoughness * outBRDFData.perceptualRoughness; |
|
|
|
outBRDFData.roughness2 = outBRDFData.roughness * outBRDFData.roughness; |
|
|
|
|
|
|
|
#ifdef _ALPHAPREMULTIPLY_ON |
|
|
|
outBRDFData.diffuse *= alpha; |
|
|
|
alpha = alpha * oneMinusReflectivity + reflectivity; |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
half3 EnvironmentBRDF(BRDFData brdfData, half3 indirectDiffuse, half3 indirectSpecular, half roughness2, half fresnelTerm) |
|
|
|
{ |
|
|
|
half3 c = indirectDiffuse * brdfData.diffuse; |
|
|
|
float surfaceReduction = 1.0 / (roughness2 + 1.0); |
|
|
|
c += surfaceReduction * indirectSpecular * lerp(brdfData.specular, brdfData.grazingTerm, fresnelTerm); |
|
|
|
return c; |
|
|
|
} |
|
|
|
|
|
|
|
// Based on Minimalist CookTorrance BRDF |
|
|
|
// Implementation is slightly different from original derivation: http://www.thetenthplanet.de/archives/255 |
|
|
|
// |
|
|
|
// * NDF [Modified] GGX |
|
|
|
// * Modified Kelemen and Szirmay-Kalos for Visibility term |
|
|
|
// * Fresnel approximated with 1/LdotH |
|
|
|
half3 DirectBDRF(BRDFData brdfData, half3 normalWS, half3 lightDirectionWS, half3 viewDirectionWS) |
|
|
|
{ |
|
|
|
#ifndef _SPECULARHIGHLIGHTS_OFF |
|
|
|
half3 halfDir = SafeNormalize(lightDirectionWS + viewDirectionWS); |
|
|
|
|
|
|
|
half NoH = saturate(dot(normalWS, halfDir)); |
|
|
|
half LoH = saturate(dot(lightDirectionWS, halfDir)); |
|
|
|
|
|
|
|
// GGX Distribution multiplied by combined approximation of Visibility and Fresnel |
|
|
|
// See "Optimizing PBR for Mobile" from Siggraph 2015 moving mobile graphics course |
|
|
|
// https://community.arm.com/events/1155 |
|
|
|
half d = NoH * NoH * (brdfData.roughness2 - 1.h) + 1.00001h; |
|
|
|
|
|
|
|
half LoH2 = LoH * LoH; |
|
|
|
half specularTerm = brdfData.roughness2 / ((d * d) * max(0.1h, LoH2) * (brdfData.roughness + 0.5h) * 4); |
|
|
|
|
|
|
|
// on mobiles (where half actually means something) denominator have risk of overflow |
|
|
|
// clamp below was added specifically to "fix" that, but dx compiler (we convert bytecode to metal/gles) |
|
|
|
// sees that specularTerm have only non-negative terms, so it skips max(0,..) in clamp (leaving only min(100,...)) |
|
|
|
#if defined (SHADER_API_MOBILE) |
|
|
|
specularTerm = specularTerm - 1e-4h; |
|
|
|
#endif |
|
|
|
|
|
|
|
#if defined (SHADER_API_MOBILE) |
|
|
|
specularTerm = clamp(specularTerm, 0.0, 100.0); // Prevent FP16 overflow on mobiles |
|
|
|
#endif |
|
|
|
|
|
|
|
half3 color = specularTerm * brdfData.specular + brdfData.diffuse; |
|
|
|
return color; |
|
|
|
#else |
|
|
|
return brdfData.diffuse; |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
// Attenuation Functions / |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
half CookieAttenuation(float3 worldPos) |
|
|
|
{ |
|
|
|
#ifdef _MAIN_LIGHT_COOKIE |
|
|
|
#ifdef _MAIN_LIGHT_DIRECTIONAL |
|
|
|
float2 cookieUV = mul(_WorldToLight, float4(worldPos, 1.0)).xy; |
|
|
|
return SAMPLE_TEXTURE2D(_MainLightCookie, sampler_MainLightCookie, cookieUV).a; |
|
|
|
#elif defined(_MAIN_LIGHT_SPOT) |
|
|
|
float4 projPos = mul(_WorldToLight, float4(worldPos, 1.0)); |
|
|
|
float2 cookieUV = projPos.xy / projPos.w + 0.5; |
|
|
|
return SAMPLE_TEXTURE2D(_MainLightCookie, sampler_MainLightCookie, cookieUV).a; |
|
|
|
#endif // POINT LIGHT cookie not supported |
|
|
|
#endif |
|
|
|
|
|
|
|
return 1; |
|
|
|
} |
|
|
|
|
|
|
|
// Matches Unity Vanila attenuation |
|
|
|
// Attenuation smoothly decreases to light range. |
|
|
|
half DistanceAttenuation(half distanceSqr, half3 distanceAttenuation) |
|
|
|
{ |
|
|
|
// We use a shared distance attenuation for additional directional and puctual lights |
|
|
|
// for directional lights attenuation will be 1 |
|
|
|
half quadFalloff = distanceAttenuation.x; |
|
|
|
half denom = distanceSqr * quadFalloff + 1.0; |
|
|
|
half lightAtten = 1.0 / denom; |
|
|
|
|
|
|
|
// We need to smoothly fade attenuation to light range. We start fading linearly at 80% of light range |
|
|
|
// Therefore: |
|
|
|
// fadeDistance = (0.8 * 0.8 * lightRangeSq) |
|
|
|
// smoothFactor = (lightRangeSqr - distanceSqr) / (lightRangeSqr - fadeDistance) |
|
|
|
// We can rewrite that to fit a MAD by doing |
|
|
|
// distanceSqr * (1.0 / (fadeDistanceSqr - lightRangeSqr)) + (-lightRangeSqr / (fadeDistanceSqr - lightRangeSqr) |
|
|
|
// distanceSqr * distanceAttenuation.y + distanceAttenuation.z |
|
|
|
half smoothFactor = saturate(distanceSqr * distanceAttenuation.y + distanceAttenuation.z); |
|
|
|
return lightAtten * smoothFactor; |
|
|
|
} |
|
|
|
|
|
|
|
half SpotAttenuation(half3 spotDirection, half3 lightDirection, half4 spotAttenuation) |
|
|
|
{ |
|
|
|
// Spot Attenuation with a linear falloff can be defined as |
|
|
|
// (SdotL - cosOuterAngle) / (cosInnerAngle - cosOuterAngle) |
|
|
|
// This can be rewritten as |
|
|
|
// invAngleRange = 1.0 / (cosInnerAngle - cosOuterAngle) |
|
|
|
// SdotL * invAngleRange + (-cosOuterAngle * invAngleRange) |
|
|
|
// SdotL * spotAttenuation.x + spotAttenuation.y |
|
|
|
|
|
|
|
// If we precompute the terms in a MAD instruction |
|
|
|
half SdotL = dot(spotDirection, lightDirection); |
|
|
|
half atten = saturate(SdotL * spotAttenuation.x + spotAttenuation.y); |
|
|
|
return atten * atten; |
|
|
|
} |
|
|
|
|
|
|
|
inline half GetLightDirectionAndRealtimeAttenuation(LightInput lightInput, half3 normal, float3 worldPos, out half3 lightDirection) |
|
|
|
{ |
|
|
|
float3 posToLightVec = lightInput.position.xyz - worldPos * lightInput.position.w; |
|
|
|
float distanceSqr = max(dot(posToLightVec, posToLightVec), 0.001); |
|
|
|
|
|
|
|
// normalized light dir |
|
|
|
lightDirection = half3(posToLightVec * rsqrt(distanceSqr)); |
|
|
|
half lightAtten = DistanceAttenuation(distanceSqr, lightInput.distanceAttenuation); |
|
|
|
lightAtten *= SpotAttenuation(lightInput.spotDirection.xyz, lightDirection, lightInput.spotAttenuation); |
|
|
|
return lightAtten; |
|
|
|
} |
|
|
|
|
|
|
|
inline half GetMainLightDirectionAndRealtimeAttenuation(LightInput lightInput, half3 normalWS, float3 positionWS, out half3 lightDirection) |
|
|
|
{ |
|
|
|
#if defined(_MAIN_LIGHT_DIRECTIONAL) |
|
|
|
// Light pos holds normalized light dir |
|
|
|
lightDirection = lightInput.position.xyz; |
|
|
|
half attenuation = 1.0; |
|
|
|
#else |
|
|
|
half attenuation = GetLightDirectionAndRealtimeAttenuation(lightInput, normalWS, positionWS, lightDirection); |
|
|
|
#endif |
|
|
|
|
|
|
|
// Cookies and shadows are only computed for main light |
|
|
|
attenuation *= CookieAttenuation(positionWS); |
|
|
|
attenuation *= RealtimeShadowAttenuation(positionWS); |
|
|
|
|
|
|
|
return attenuation; |
|
|
|
} |
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
// Lighting Functions // |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
half3 LightingLambert(half3 lightColor, half3 lightDir, half3 normal) |
|
|
|
{ |
|
|
|
half NdotL = saturate(dot(normal, lightDir)); |
|
|
|
return lightColor * NdotL; |
|
|
|
} |
|
|
|
|
|
|
|
half3 LightingSpecular(half3 lightColor, half3 lightDir, half3 normal, half3 viewDir, half4 specularGloss, half shininess) |
|
|
|
{ |
|
|
|
half3 halfVec = SafeNormalize(lightDir + viewDir); |
|
|
|
half NdotH = saturate(dot(normal, halfVec)); |
|
|
|
half3 specularReflection = specularGloss.rgb * pow(NdotH, shininess) * specularGloss.a; |
|
|
|
return lightColor * specularReflection; |
|
|
|
} |
|
|
|
|
|
|
|
half3 LightingPhysicallyBased(LightInput light, BRDFData brdfData, half3 normalWS, half3 positionWS, half3 viewDirectionWS) |
|
|
|
{ |
|
|
|
// TODO: add support to shadow mask. |
|
|
|
half4 bakedOcclusion = half4(0, 0, 0, 0); |
|
|
|
half3 lightDirectionWS; |
|
|
|
half lightAttenuation = GetLightDirectionAndRealtimeAttenuation(light, normalWS, positionWS, /*out*/ lightDirectionWS); |
|
|
|
lightAttenuation = MixRealtimeAndBakedOcclusion(lightAttenuation, light.subtractiveModeBakedOcclusion); |
|
|
|
|
|
|
|
half NdotL = saturate(dot(normalWS, lightDirectionWS)); |
|
|
|
half3 radiance = light.color * (lightAttenuation * NdotL); |
|
|
|
return DirectBDRF(brdfData, normalWS, lightDirectionWS, viewDirectionWS) * radiance; |
|
|
|
} |
|
|
|
|
|
|
|
half3 VertexLighting(float3 positionWS, half3 normalWS) |
|
|
|
{ |
|
|
|
half3 vertexLightColor = half3(0.0, 0.0, 0.0); |
|
|
|
|
|
|
|
#if defined(_VERTEX_LIGHTS) |
|
|
|
int vertexLightStart = _AdditionalLightCount.x; |
|
|
|
int vertexLightEnd = min(_AdditionalLightCount.y, unity_LightIndicesOffsetAndCount.y); |
|
|
|
for (int lightIter = vertexLightStart; lightIter < vertexLightEnd; ++lightIter) |
|
|
|
{ |
|
|
|
LightInput light = GetLight(lightIter); |
|
|
|
|
|
|
|
half3 lightDirection; |
|
|
|
half atten = GetLightDirectionAndRealtimeAttenuation(light, normalWS, positionWS, lightDirection); |
|
|
|
half3 lightColor = light.color * atten; |
|
|
|
vertexLightColor += LightingLambert(lightColor, lightDirection, normalWS); |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
return vertexLightColor; |
|
|
|
} |
|
|
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
// Fragment Functions // |
|
|
|
// Used by ShaderGraph and others builtin renderers // |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
half4 LightweightFragmentPBR(float3 positionWS, half3 normalWS, half3 viewDirectionWS, |
|
|
|
half3 bakedGI, half3 vertexLighting, half3 albedo, half metallic, half3 specular, |
|
|
|
half smoothness, half occlusion, half3 emission, half alpha) |
|
|
|
{ |
|
|
|
BRDFData brdfData; |
|
|
|
InitializeBRDFData(albedo, metallic, specular, smoothness, alpha, brdfData); |
|
|
|
|
|
|
|
half3 lightDirectionWS; |
|
|
|
|
|
|
|
LightInput mainLight = GetMainLight(); |
|
|
|
|
|
|
|
// No distance fade. |
|
|
|
half realtimeMainLightAtten = GetMainLightDirectionAndRealtimeAttenuation(mainLight, normalWS, positionWS, lightDirectionWS); |
|
|
|
half NdotL = saturate(dot(normalWS, lightDirectionWS)); |
|
|
|
half3 radiance = mainLight.color * NdotL; |
|
|
|
|
|
|
|
half3 indirectDiffuse = DiffuseGI(bakedGI, radiance, realtimeMainLightAtten, occlusion); |
|
|
|
half3 indirectSpecular = GlossyEnvironmentReflection(viewDirectionWS, normalWS, brdfData.perceptualRoughness, occlusion); |
|
|
|
|
|
|
|
half roughness2 = brdfData.roughness * brdfData.roughness; |
|
|
|
half fresnelTerm = Pow4(1.0 - saturate(dot(normalWS, viewDirectionWS))); |
|
|
|
half3 color = EnvironmentBRDF(brdfData, indirectDiffuse, indirectSpecular, roughness2, fresnelTerm); |
|
|
|
|
|
|
|
half mainLightAtten = MixRealtimeAndBakedOcclusion(realtimeMainLightAtten, mainLight.subtractiveModeBakedOcclusion); |
|
|
|
radiance *= mainLightAtten; |
|
|
|
|
|
|
|
color += DirectBDRF(brdfData, normalWS, lightDirectionWS, viewDirectionWS) * radiance; |
|
|
|
color += vertexLighting * brdfData.diffuse; |
|
|
|
|
|
|
|
#ifdef _ADDITIONAL_LIGHTS |
|
|
|
int pixelLightCount = GetPixelLightCount(); |
|
|
|
for (int lightIter = 0; lightIter < pixelLightCount; ++lightIter) |
|
|
|
{ |
|
|
|
LightInput light = GetLight(lightIter); |
|
|
|
color += LightingPhysicallyBased(light, brdfData, normalWS, positionWS, viewDirectionWS); |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
color += emission; |
|
|
|
return half4(color, alpha); |
|
|
|
} |
|
|
|
|
|
|
|
half4 LightweightFragmentLambert(float3 positionWS, half3 normalWS, half3 viewDirectionWS, |
|
|
|
half fogFactor, half3 diffuseGI, half3 diffuse, half3 emission, half alpha) |
|
|
|
{ |
|
|
|
half3 lightDirection; |
|
|
|
|
|
|
|
LightInput mainLight = GetMainLight(); |
|
|
|
half realtimeMainLightAtten = GetMainLightDirectionAndRealtimeAttenuation(mainLight, normalWS, positionWS, lightDirection); |
|
|
|
half3 NdotL = saturate(dot(normalWS, lightDirection)); |
|
|
|
half3 lambert = mainLight.color * NdotL; |
|
|
|
|
|
|
|
half3 indirectDiffuse = DiffuseGI(diffuseGI, lambert, realtimeMainLightAtten, 1.0); |
|
|
|
half mainLightAtten = MixRealtimeAndBakedOcclusion(realtimeMainLightAtten, mainLight.subtractiveModeBakedOcclusion); |
|
|
|
|
|
|
|
half3 diffuseColor = lambert * mainLightAtten + indirectDiffuse; |
|
|
|
|
|
|
|
#ifdef _ADDITIONAL_LIGHTS |
|
|
|
int pixelLightCount = GetPixelLightCount(); |
|
|
|
for (int lightIter = 0; lightIter < pixelLightCount; ++lightIter) |
|
|
|
{ |
|
|
|
LightInput light = GetLight(lightIter); |
|
|
|
half lightAttenuation = GetLightDirectionAndRealtimeAttenuation(light, normalWS, positionWS, lightDirection); |
|
|
|
lightAttenuation = MixRealtimeAndBakedOcclusion(lightAttenuation, light.subtractiveModeBakedOcclusion); |
|
|
|
|
|
|
|
half3 attenuatedLightColor = light.color * lightAttenuation; |
|
|
|
diffuseColor += LightingLambert(attenuatedLightColor, lightDirection, normalWS); |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
half3 finalColor = diffuseColor * diffuse + emission; |
|
|
|
|
|
|
|
// Computes Fog Factor per vextex |
|
|
|
ApplyFog(finalColor, fogFactor); |
|
|
|
return half4(finalColor, alpha); |
|
|
|
} |
|
|
|
|
|
|
|
half4 LightweightFragmentBlinnPhong(float3 positionWS, half3 normalWS, half3 viewDirectionWS, |
|
|
|
half fogFactor, half3 diffuseGI, half3 diffuse, half4 specularGloss, half shininess, half3 emission, half alpha) |
|
|
|
{ |
|
|
|
half3 lightDirection; |
|
|
|
|
|
|
|
LightInput mainLight = GetMainLight(); |
|
|
|
half realtimeMainLightAtten = GetMainLightDirectionAndRealtimeAttenuation(mainLight, normalWS, positionWS, lightDirection); |
|
|
|
half3 NdotL = saturate(dot(normalWS, lightDirection)); |
|
|
|
half3 lambert = mainLight.color * NdotL; |
|
|
|
|
|
|
|
half3 indirectDiffuse = DiffuseGI(diffuseGI, lambert, realtimeMainLightAtten, 1.0); |
|
|
|
half mainLightAtten = MixRealtimeAndBakedOcclusion(realtimeMainLightAtten, mainLight.subtractiveModeBakedOcclusion); |
|
|
|
|
|
|
|
half3 diffuseColor = lambert * mainLightAtten + indirectDiffuse; |
|
|
|
half3 specularColor = LightingSpecular(mainLight.color * mainLightAtten, lightDirection, normalWS, viewDirectionWS, specularGloss, shininess); |
|
|
|
|
|
|
|
#ifdef _ADDITIONAL_LIGHTS |
|
|
|
int pixelLightCount = GetPixelLightCount(); |
|
|
|
for (int lightIter = 0; lightIter < pixelLightCount; ++lightIter) |
|
|
|
{ |
|
|
|
LightInput light = GetLight(lightIter); |
|
|
|
half lightAttenuation = GetLightDirectionAndRealtimeAttenuation(light, normalWS, positionWS, lightDirection); |
|
|
|
lightAttenuation = MixRealtimeAndBakedOcclusion(lightAttenuation, light.subtractiveModeBakedOcclusion); |
|
|
|
|
|
|
|
half3 attenuatedLightColor = light.color * lightAttenuation; |
|
|
|
diffuseColor += LightingLambert(attenuatedLightColor, lightDirection, normalWS); |
|
|
|
specularColor += LightingSpecular(attenuatedLightColor, lightDirection, normalWS, viewDirectionWS, specularGloss, shininess); |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
half3 finalColor = diffuseColor * diffuse + emission; |
|
|
|
finalColor += specularColor; |
|
|
|
|
|
|
|
// Computes Fog Factor per vextex |
|
|
|
ApplyFog(finalColor, fogFactor); |
|
|
|
return half4(finalColor, alpha); |
|
|
|
} |
|
|
|
#endif |