|
|
|
|
|
|
|
|
|
|
// For most of the domain, the absolute error is pretty low, under 0.005. |
|
|
|
// You can use the following Mathematica code to reproduce our results: |
|
|
|
// t = Flatten[Table[{x, y, f[x,y]}, {x, 0, 0.999999, 0.001}, {y, -0.999999, 0.999999, 0.002}], 1] |
|
|
|
// t = Flatten[Table[{x, y, f[x, y]}, {x, 0, 0.999999, 0.001}, {y, -0.999999, 0.999999, 0.002}], 1] |
|
|
|
// m = NonlinearModelFit[t, {x * (y + e) * (0.5 + (y - e) * (a + b * x + c * x^2 + d * x^3))}, {a, b, c, d, e}, {x, y}] |
|
|
|
return saturate(x * (0.9245867471551246 + y) * (0.5 + (-0.9245867471551246 + y) * (0.5359050373687144 + x * (-1.0054221851257754 + x * (1.8199061187417047 - x * 1.3172081704209504))))); |
|
|
|
#endif |
|
|
|