#include "ShaderLibrary/SampleUVMapping.hlsl"
#include "../MaterialUtilities.hlsl"
#ifdef LAYERED_LIT_USE_SIMPLE_BLEND
static const float defaultHeightValue = 1.0f;
#else
static const float defaultHeightValue = 0.0f;
#endif
void GetBuiltinData(FragInputs input, SurfaceData surfaceData, float alpha, float depthOffset, out BuiltinData builtinData)
{
void SetEnabledHeightByLayer(inout float height0, inout float height1, inout float height2, inout float height3)
{
#ifndef _HEIGHTMAP0
height0 = defaultHeightValue ;
height0 = 0.0 ;
height1 = defaultHeightValue ;
height1 = 0.0 ;
height2 = defaultHeightValue ;
height2 = 0.0 ;
height3 = defaultHeightValue ;
height3 = 0.0 ;
height3 = defaultHeightValue ;
height3 = 0.0 ;
height2 = defaultHeightValue ;
height2 = 0.0 ;
#endif
}
#if defined(_DENSITY_MODE)
#else
masks[0] = 1.0;
#endif
masks[1] = inputMasks.r;
#if _LAYER_COUNT > 2
masks[2] = inputMasks.g;
return 0.0;
}
float4 GetMaxHeight(float4 heights)
{
float maxHeight = max(heights.r, heights.g);
#ifdef _LAYEREDLIT_4_LAYERS
maxHeight = max(Max3(heights.r, heights.g, heights.b), heights.a);
#endif
#ifdef _LAYEREDLIT_3_LAYERS
maxHeight = Max3(heights.r, heights.g, heights.b);
#endif
return maxHeight;
}
// Returns layering blend mask after application of height based blend.
float4 ApplyHeightBlend(float4 heights, float4 blendMask)
{
// Add offsets for all the layers.
heights = heights + float4(_HeightOffset0, _HeightOffset1, _HeightOffset2, _HeightOffset3);
// We need to mask out inactive layers so that their height does not impact the result.
float4 maskedHeights = heights * blendMask.argb;
float maxHeight = GetMaxHeight(maskedHeights);
// Make sure that transition is not zero otherwise the next computation will be wrong.
// The epsilon here also has to be bigger than the epsilon in the next computation.
float transition = max(_HeightTransition, 1e-5);
// The goal here is to have all but the heighest layer at negative heights, then we add the transition so that if the next heighest layer is near transition it will have a positive value.
// Then we clamp this to zero and normalize everything so that heighest layer has a value of 1.
maskedHeights = maskedHeights - maxHeight.xxxx;
// We need to add an epsilon here for active layers (hence the blendMask again) so that at least a layer shows up if everything's too low.
maskedHeights = (max(0, maskedHeights + transition) + 1e-6) * blendMask.argb;
// Normalize
maxHeight = GetMaxHeight(maskedHeights);
maskedHeights = maskedHeights / maxHeight.xxxx;
return maskedHeights.yzwx;
}
float4 blendMasks = GetBlendMask(layerTexCoord, vertexColor, true, lod);
float4 inputBlendMasks = GetBlendMask(layerTexCoord, vertexColor, true, lod);
ComputeMaskWeights(blendMasks, weights);
#if defined(_HEIGHTMAP0) || defined(_HEIGHTMAP1) || defined(_HEIGHTMAP2) || defined(_HEIGHTMAP3)
float height0 = (SAMPLE_UVMAPPING_TEXTURE2D_LOD(_HeightMap0, SAMPLER_HEIGHTMAP_IDX, layerTexCoord.base0, lod).r - _HeightCenter0) * _HeightAmplitude0;
ApplyTessellationTileScale(height0, height1, height2, height3); // Only apply with per vertex displacement
SetEnabledHeightByLayer(height0, height1, height2, height3);
float4 resultBlendMasks = inputBlendMasks;
#if defined(_HEIGHT_BASED_BLEND)
resultBlendMasks = ApplyHeightBlend(float4(height0, height1, height2, height3), inputBlendMasks);
#endif
ComputeMaskWeights(resultBlendMasks, weights);
return heightResult + height0 * inheritBaseHeight;
return heightResult + height0 * inheritBaseHeight * inputBlendMasks.a; // We multiply by the input mask for the first layer because if the mask here is black it means that the layer is not actually underneath any visible layer so we don't want to inherit its height.
#else
float heightResult = 0.0;
float3 ApplyHeightBasedBlend(float3 inputMask, float3 inputHeight, float3 blendUsingHeight)
{
return saturate(lerp(inputMask * inputHeight * blendUsingHeight * 100, 1, inputMask * inputMask)); // 100 arbitrary scale to limit blendUsingHeight values.
}
void ComputeLayerWeights(FragInputs input, LayerTexCoord layerTexCoord, float4 inputAlphaMask, out float outWeights[_MAX_LAYER])
void ComputeLayerWeights(FragInputs input, LayerTexCoord layerTexCoord, float4 inputAlphaMask, float4 blendMasks, out float outWeights[_MAX_LAYER])
float4 blendMasks = GetBlendMask(layerTexCoord, input.color);
#if defined(_DENSITY_MODE)
// Note: blendMasks.argb because a is main layer
float4 opacityAsDensity = saturate((inputAlphaMask - (float4(1.0, 1.0, 1.0, 1.0) - blendMasks.argb)) * 20.0);
float4 useOpacityAsDensityParam = float4(_OpacityAsDensity0, _OpacityAsDensity1, _OpacityAsDensity2, _OpacityAsDensity3);
blendMasks.argb = lerp(blendMasks.argb, opacityAsDensity, useOpacityAsDensityParam);
#endif
for (int i = 0; i < _MAX_LAYER; ++i)
{
outWeights[i] = 0.0f;
}
#if defined(_HEIGHT_BASED_BLEND)
// We don't use height 0 for the height blend based mode
heights.y += (heights.x * 0.0001);
#endif
#else
float4 heights = float4(0.0, 0.0, 0.0, 0.0);
blendMasks = ApplyHeightBlend(heights, blendMasks);
#endif
// If no heightmap is set on any layer, we don't need to try and blend them based on height...
// don't apply on main layer
blendMasks.rgb = ApplyHeightBasedBlend(blendMasks.rgb, heights.yzw, float3(_BlendUsingHeight1, _BlendUsingHeight2, _BlendUsingHeight3));
#if defined(_DENSITY_MODE)
// Note: blendMasks.argb because a is main layer
float4 opacityAsDensity = saturate((inputAlphaMask - (float4(1.0, 1.0, 1.0, 1.0) - blendMasks.argb)) * 20.0);
float4 useOpacityAsDensityParam = float4(_OpacityAsDensity0, _OpacityAsDensity1, _OpacityAsDensity2, _OpacityAsDensity3);
blendMasks.argb = lerp(blendMasks.argb, opacityAsDensity, useOpacityAsDensityParam);
float3 ComputeMainNormalInfluence(FragInputs input, float3 normalTS0, float3 normalTS1, float3 normalTS2, float3 normalTS3, LayerTexCoord layerTexCoord, float weights[_MAX_LAYER])
float3 ComputeMainNormalInfluence(FragInputs input, float3 normalTS0, float3 normalTS1, float3 normalTS2, float3 normalTS3, LayerTexCoord layerTexCoord, float inputMainLayerMask, float weights[_MAX_LAYER])
{
// Get our regular normal from regular layering
float3 normalTS = BlendLayeredVector3(normalTS0, normalTS1, normalTS2, normalTS3, weights);
// Add on our regular normal a bit of Main Layer normal base on influence factor. Note that this affect only the "visible" normal.
#ifdef SURFACE_GRADIENT
return normalTS + influenceFactor * mainNormalTS;
return normalTS + influenceFactor * mainNormalTS * inputMainLayerMask ;
return lerp(normalTS, BlendNormalRNM(normalTS, mainNormalTS), influenceFactor);
return lerp(normalTS, BlendNormalRNM(normalTS, mainNormalTS), influenceFactor * inputMainLayerMask );
#endif
}
float alpha3 = GetSurfaceData3(input, layerTexCoord, surfaceData3, normalTS3);
// Note: If per pixel displacement is enabled it mean we will fetch again the various heightmaps at the intersection location. Not sure the compiler can optimize.
float4 blendMasks = GetBlendMask(layerTexCoord, input.color);
ComputeLayerWeights(input, layerTexCoord, float4(alpha0, alpha1, alpha2, alpha3), weights);
ComputeLayerWeights(input, layerTexCoord, float4(alpha0, alpha1, alpha2, alpha3), blendMasks, weights);
// For layered shader, alpha of base color is used as either an opacity mask, a composition mask for inheritance parameters or a density mask.
float alpha = PROP_BLEND_SCALAR(alpha, weights);
#if defined(_MAIN_LAYER_INFLUENCE_MODE)
surfaceData.baseColor = ComputeMainBaseColorInfluence(surfaceData0.baseColor, surfaceData1.baseColor, surfaceData2.baseColor, surfaceData3.baseColor, layerTexCoord, weights);
float3 normalTS = ComputeMainNormalInfluence(input, normalTS0, normalTS1, normalTS2, normalTS3, layerTexCoord, weights);
float3 normalTS = ComputeMainNormalInfluence(input, normalTS0, normalTS1, normalTS2, normalTS3, layerTexCoord, blendMasks.a, weights);
#else
surfaceData.baseColor = SURFACEDATA_BLEND_VECTOR3(surfaceData, baseColor, weights);
float3 normalTS = BlendLayeredVector3(normalTS0, normalTS1, normalTS2, normalTS3, weights);