|
|
|
|
|
|
// N.b.: this function accounts for horizon clipping. |
|
|
|
float DiffuseSphereLightIrradiance(float sinSqSigma, float cosOmega) |
|
|
|
{ |
|
|
|
float irradiance; |
|
|
|
|
|
|
|
#if 0 // Ref: Area Light Sources for Real-Time Graphics, page 4 (1996). |
|
|
|
float sinSqOmega = saturate(1 - cosOmega * cosOmega); |
|
|
|
float cosSqSigma = saturate(1 - sinSqSigma); |
|
|
|
|
|
|
if (omega < HALF_PI - sigma) |
|
|
|
{ |
|
|
|
// No horizon occlusion (case #1). |
|
|
|
irradiance = e; |
|
|
|
return e; |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
|
|
|
if (omega < HALF_PI) |
|
|
|
{ |
|
|
|
// Partial horizon occlusion (case #2). |
|
|
|
irradiance = e + INV_PI * (g - h); |
|
|
|
return saturate(e + INV_PI * (g - h)); |
|
|
|
irradiance = INV_PI * (g + h); |
|
|
|
return saturate(INV_PI * (g + h)); |
|
|
|
#else // Ref: Moving Frostbite to Physically Based Rendering, page 47 (2015). |
|
|
|
float cosSqOmega = cosOmega * cosOmega; |
|
|
|
#else // Ref: Moving Frostbite to Physically Based Rendering, page 47 (2015, optimized). |
|
|
|
float cosSqOmega = cosOmega * cosOmega; // y^2 |
|
|
|
if (cosSqOmega > sinSqSigma) |
|
|
|
if (cosSqOmega > sinSqSigma) // (y^2)>x |
|
|
|
irradiance = sinSqSigma * saturate(cosOmega); |
|
|
|
return sinSqSigma * saturate(cosOmega); // x*Clip[y,0,1] |
|
|
|
float cotSqSigma = rcp(sinSqSigma) - 1; |
|
|
|
float tanSqSigma = rcp(cotSqSigma); |
|
|
|
float sinSqOmega = 1 - cosSqOmega; |
|
|
|
float cotSqSigma = rcp(sinSqSigma) - 1; // 1/x-1 |
|
|
|
float tanSqSigma = rcp(cotSqSigma); // (1-x)/x |
|
|
|
float sinSqOmega = 1 - cosSqOmega; // 1-y^2 |
|
|
|
float x = sinSqOmega * tanSqSigma; |
|
|
|
float y = -cosOmega * rsqrt(x); |
|
|
|
float w = sinSqOmega * tanSqSigma; // (1-y^2)*((1-x)/x) |
|
|
|
float x = -cosOmega * rsqrt(w); // -y*Sqrt[(1/x-1)/(1-y^2)] |
|
|
|
float y = sqrt(sinSqOmega * tanSqSigma - cosSqOmega); // Sqrt[(1-y^2)*((1-x)/x)-y^2] |
|
|
|
float z = y * cotSqSigma; // Sqrt[(1-y^2)*((1-x)/x)-y^2]*(1/x-1) |
|
|
|
float a = sqrt(sinSqOmega * tanSqSigma - cosSqOmega); |
|
|
|
float b = a * cotSqSigma; |
|
|
|
float a = cosOmega * acos(x) - z; // y*ArcCos[-y*Sqrt[(1/x-1)/(1-y^2)]]-Sqrt[(1-y^2)*((1-x)/x)-y^2]*(1/x-1) |
|
|
|
float b = atan(y); // ArcTan[Sqrt[(1-y^2)*((1-x)/x)-y^2]] |
|
|
|
irradiance = INV_PI * ((cosOmega * acos(y) - b) * sinSqSigma + atan(a)); |
|
|
|
return saturate(INV_PI * (a * sinSqSigma + b)); // (a/Pi)*x+(b/Pi) |
|
|
|
return max(irradiance, 0); |
|
|
|
} |
|
|
|
|
|
|
|
// Expects non-normalized vertex positions. |
|
|
|