
Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer
through Optimal Transport

Eric Risser,
Unity Technologies

(c) Texture(b) Style transfer(a) Style images (d) Texture synthesis

Figure 1: (a) Three style images on left followed by (b) corresponding style transfer results with content images inset in the bottom right. (c
& d) Our texture synthesis results.

Abstract
This paper presents a light-weight, high-quality texture synthesis
algorithm that easily generalizes to other applications such as style
transfer and texture mixing. We represent texture features through
the deep neural activation vectors within the bottleneck layer of
an auto-encoder and frame the texture synthesis problem as op-
timal transport between the activation values of the image being
synthesized and those of an exemplar texture. To find this optimal
transport mapping, we utilize an N-dimensional probability density
function (PDF) transfer process that iterates over multiple random
rotations of the PDF basis and matches the 1D marginal distribu-
tions across each dimension. This achieves quality and flexibility
on par with expensive back-propagation based neural texture syn-
thesis methods, but with the potential of achieving interactive rates.
We demonstrate that first order statistics offer a more robust repre-
sentation for texture than the second order statistics that are used
today. We propose an extension of this algorithm that reduces the
dimensionality of the neural feature space. We utilize a multi-scale
coarse-to-fine synthesis pyramid to capture and preserve larger im-
age features; unify color and style transfer under one framework;
and further augment this system with a novel masking scheme that
re-samples and re-weights the feature distribution for user-guided
texture painting and targeted style transfer.

Keywords: style transfer, texture synthesis, optimal transport,
neural networks

Concepts: •Computing methodologies→ Image manipulation;
Computational photography;

1 Introduction
Methods for both representing and synthesizing textures have been
explored broadly. Recently, focus has gravitated towards utilizing
neural networks, both as a way to represent texture features as well
as a mechanism for performing synthesis. The seminal work by
Gatys et al. [2015] shows that the correlation of features extracted

by a deep neural network (i.e. the Gram matrix) can function as
a fully parametric summary of texture characteristics. Since then,
hundreds of follow-up papers have better/faster ways of performing
neural texture synthesis through minimizing the distance between
correlation matrices or other approximations of the textures feature
distribution. This paper deviates from this trend and proposes a sta-
tistically motivated formulation of the Texture Synthesis problem
as one of robust feature transformation through optimal transport,
with contributions over the state-of-the-art in neural texture synthe-
sis in two areas: performance and generalization.

By performance, we refer to both the visual quality as well as
the speed of the algorithm, as this is a trade-off. Our approach
achieves superior results with a small computational budget by
deviating from prior art in neural texture synthesis. Typically
such approaches deeply entangle the two problems, representa-
tion and generation, solving them both in tandem through either
back-propagation optimization or fully feed-forward methods. In
contrast, we propose a light-weight optimization process, an N-
Dimensional probability density function transform operating di-
rectly on the deep neural features themselves, within the bottleneck
layer of an auto-encoder. This achieves the quality and flexibil-
ity of expensive back-propagation based methods but within a fast
feed-forward auto-encoder framework that does not require custom
training. We further accelerate the N-Dimensional PDF transform
through dimension reduction.

By generalization, we refer to our statistically-motivated approach
being a general algorithm that envelops other texture synthesis
problems such as Style Transfer, Inverse Texture Synthesis and Tex-
ture Mixing. These classically difficult problems have historically
required significant modifications to popular texture synthesis algo-
rithms, or justified their own custom tailored approach. We show
that our statistically motivated approach more directly represents
the native texture synthesis problem and can solve these special
cases either directly or with minor modifications. In addition, the
generation process can be directly influenced through re-sampling
the feature distribution based on user-drawn masks. This allows for
guided, controllable synthesis with only minor changes.

ar
X

iv
:2

01
0.

14
70

2v
1

 [
cs

.G
R

]
 2

8
O

ct
 2

02
0

Overall, the speed, quality and generalization of our approach leads
to a neural network-based solution for texture synthesis problems
that is viable for use in industry.

Our contributions include:

1. A fast, high quality neural texture synthesis method based on
robust feature matching of first order statistics. We present
the first optimization based neural texture synthesis method
that executes directly in feature space, not requiring back-
propagation training.

2. An acceleration strategy making this approach interactive,
even for high resolution images.

3. Extensions to several special case problems such as Style
Transfer and Texture Mixing.

4. A unified statistical model for style and color transfer using a
single algorithm.

5. A novel user control scheme, based on feature re-sampling
through guide maps.

2 Related work
Methods for both representing and synthesizing textures have been
explored broadly over the last decades. Heeger and Bergen [1995]
represented texture using only first-order feature statistics gathered
through convolution of the image with a filter bank and utilized an
optimization process to transform a noise image into one that sta-
tistically matches an exemplar. Portilla and Simoncelli [2000] ex-
panded this concept with more sophisticated filters and an empha-
sis on the joint Nth-order statistics of the filter responses, averaged
across the image into a parametric model.

Patch-based methods represent texture as a collection of overlap-
ping image patches and the various corresponding synthesis meth-
ods attempt to re-arrange the configuration of the patches [Efros
and Leung 1999; Wei and Levoy 2000; Hertzmann et al. 2001;
Lefebvre and Hoppe 2005; Lefebvre and Hoppe 2006; Wei et al.
2008; Barnes et al. 2009] and blend their overlapping regions so
that the resulting image shares similar patch statistics as the exem-
plar [Kwatra et al. 2005; Darabi et al. 2012].

Deep Learning-based algorithms have achieved state of the art
results on classically difficult special cases of the texture synthesis
problem, predominantly Style Transfer. The seminal work on neu-
ral texture synthesis and style transfer [Gatys et al. 2015; Gatys
et al. 2016b], introduced deep learning to the field, significantly
advancing the quality of textures synthesized from a parametric
model. This work builds upon an image synthesis strategy first
used for visualizing the training process within a CNN [Mahen-
dran and Vedaldi 2014] and later extended by DeepDream to pro-
duce artistic work [Mordvintsev and Christopher 2015]. Inspired
by Portilla and Simoncelli [2000], a collection of Gram matrices
gathered from several key layers of a neural network are cumula-
tively used as the parametric model for texture, where transforming
an image to mimic the texture of another is achieved through min-
imizing the distance between each image’s respective set of Gram
matrices. Since neural texture synthesis introduced the concept, it
has become common practice to numerically measure the visual
similarity of two textures as the distance between their correspond-
ing averaged co-occurrence matrices. Several techniques have been
developed to improve synthesis quality. An inherent instability of
the Gram matrix based parametric model is highlighted and the loss
function is supplemented with an additional histogram matching
term [Risser et al. 2017], similar to the first order statistics match-
ing approach first presented by Heeger and Bergen. They also in-
troduced a coarse-to-fine multi-scale pyramid approach for the syn-

thesis process which yielded both speed and quality improvements.
Many other contemporary extensions to the basic Gatys approach
were proposed to extend its functionality for related image synthe-
sis tasks such as regular pattern synthesis [Sendik and Cohen-or
2017] and Texture Painting [Gatys et al. 2017].

A major drawback of the Gatys et al. method is the high cost of
utilizing back-propagation training as a general purpose optimizer
for texture synthesis. To address this, several feed-forward network
training schemes have been explored to approximate the optimiza-
tion process, formulating the problem as one of learning texture
synthesis as an image-to-image translation problem [Johnson et al.
2016; Ulyanov et al. 2016a]. While fast, these inference methods
are comparatively weaker with respect to visual quality and they
require training one network for one or a small number of styles.
Thus, much of the research in this area has been focused on improv-
ing visual quality [Wang et al. 2017; Li et al. 2017a] and arbitrary
texture support [Chen and Schmidt 2016a; Li et al. 2017b].

The first truly universal style transfer method that did not re-
quire custom training for each style was introduced by Chen and
Schmidt [2016b] who present an auto-encoder strategy that mimics
the original back-propagation strategy of Gatys. They used pre-
trained VGG as the encoder and trained a VGG inversion network
as the decoder. Their generation method was based on earlier non-
parametric patch-based synthesis. This strategy was expanded upon
by Li et al. [2017a] introducing decoders after each pooling layer
of VGG and a deep-to-shallow iterative synthesis strategy, more
closely mimicking the original Gatys approach that matches a set
of layers for each pooling size.

2.1 Theoretical Motivation
The goal of texture synthesis is, given an exemplar image, to con-
strue a generative process that can synthesize arbitrarily many new
unique images that are statistically indistinguishable from the ex-
emplar. Textures are stationary by definition, therefore texture can
be modeled as a finite set of statistical measurements taken over
the spatial extent of a theoretically infinite image. Any sub-infinite
image with the same statistical measurements is therefore consid-
ered the same texture. Modeling texture in such a way conveniently
provides many mathematical tools to analytically measure the sim-
ilarity between two textures.

The study of texture synthesis can be broadly summarized as hav-
ing two goals: (1) finding better representations for texture that
more directly model the key feature statistics and (2) finding better
generative processes for synthesizing new images that match to a
set of exemplar feature statistics. These two goals are symbiotic in
nature and should be designed to work in tandem, reinforcing each
others strengths. Evidence suggests this is not happening in modern
optimization-based neural texture synthesis approaches. This point
is highlighted by two papers that achieve near comparable results
to Gatys et al. while simplifying opposing aspects of the original
paper. Li et al. [2017a] continue using pre-trained VGG as their fea-
ture space representations but replace the expensive optimization-
based generative process with the Whitening Coloring Transform,
an approximation that can be solved in closed form. In contrast,
Ustyuzhaninov et al. [2016] found that Gatys’s generative process
applied to a single layer network with random weights can perform
texture synthesis on par with the full approach. This shows that
neither deep neural networks nor the fact that they were trained to
learn a feature space that mimics human vision are a contributing
factor to the success of the original method, rather, the powerful
general purpose LBFGS optimizer is capable of brute forcing a tex-
ture synthesis solution despite a weak representation. Surprisingly,
one paper shows that a strong feature representation can achieve
good results despite a basic generation approach while the other
paper shows that robust generation approach makes the choice of

representation irrelevant.

We make two observations: (1) Back-propagation based opti-
mization, while powerful, is superfluous and therefore inefficient
when using pre-trained VGG as the feature representation. (2) It
is surprising that the original approach by Gatys does not achieve
greatly superior results to Li et al. or Ustyuzhaninov et al. despite
having both a strong feature representation as well as a strong gen-
eration process. This warrants a deeper look at the factor that all
three papers have in common, the use of second-order summary
statistics and the case for parametric synthesis in general.

While parametric synthesis is theoretically interesting, if the goal is
to achieve high quality and user controllable synthesis, it has many
disadvantages and no clear advantages. We observe that a para-
metric model is a summary representation of an underlying feature
distribution, so minimizing the distance between the feature distri-
butions directly will also achieve a minimization of the paramet-
ric model. The stationary nature of textures motivated early re-
searchers to discard spatial information by opting to use summary
statistics as their model for texture. However, summary statistics
are not necessary for discarding spatial information, but they do
discard feature information. Therefore, they are a weaker repre-
sentation than modeling the feature statistics directly and likely the
fundamental limitation in Gatys and follow-up literature.

2.2 The case for first order statistics
This observation is reinforced by the analysis of the instabilities in-
herent with the Gram model (and parametric models in general)
[Risser et al. 2017], with the proposed solution being an addi-
tional direct matching of first order statistics during the optimiza-
tion process, achieving superior synthesis quality over the original
approach by Gatys. They use a set of 1D histogram matches across
channels in a neural network layer. This idea shares similarities
with much earlier works [Heeger and Bergen 1995] who posed
their generative process as one of matching first order feature statis-
tics through a set of 1D axis-aligned histogram swaps on feature
distributions. Inspired by the success in the color transfer literature
with matching first order statistics in a robust manner through an
N-Dimensional Probability Density Function transformation [Pitie
et al. 2007], Rabin et al. [2012] combine the two methods, applying
N-Dimensional Probability Density Function transformation to tex-
ture synthesis using a wavelet pyramid representation. While this
approach focused on the problem of texture mixtures, it reinforces
our theoretical motivation for using optimal transport as a texture
generation process.

In parallel to the exploration of filter-based methods that match first
order statistics, many patch-based methods were developed to also
match first order statistics. Patch-based methods are designed as
Markov random fields (MRF), where the interaction of overlapping
patches within a neighborhood characterizes the statistical model
for texture. Patch-based methods utilize a nearest neighbor search
strategy to directly match patches from the synthesized texture with
ground truth patches in the exemplar. The goal is to update pixel
values or blend patches so that the resulting synthesis patch more
closely mimics the exemplar patch. In this regard, the generative
process is just matching first order statistics directly. It’s interesting
to note that early patch-based methods only matched a forward term
where every pixel in the synthesis image finds its nearest neighbor
in the exemplar image. Inverse Texture Synthesis [Wei et al. 2008]
highlighted this as a weakness in the approach and augmented it
with an inverse term to also minimize the error between each pixel
in the exemplar and its nearest neighbor in the synthesis image. The
forward and inverse terms work together as an optimal transport
strategy for matching exact feature statistics between two Proba-
bility Density Functions, as illustrated in figure 2. We make the
second observation that these linear filter and patch-based threads

of research independently converge on a similar conclusion: Opti-
mal transport of first order feature distributions is a superior texture
generation process. It logically follows that this would be true as
well for the non-linear-filter based methods of modern neural net-
work texture synthesis.

(a)

(b)

(c)

(d)

Figure 2: Comparison against Inverse Texture Synthesis. (a) The
input exemplar. (b) Synthesis result using single-direction nearest
neighbor search, gets stuck in local minimum and does not repre-
sent the entire image. (c) Bi-directional nearest neighbor search
matches global image statistics. (c) Our optimal transport ap-
proach achieves similar results.

3 Proposed Algorithm
Previous non-linear filter-based neural network methods can be
grouped into two broad categories: back-propagation optimization
and feed-forward. Each category has been characterized by spe-
cific shortcomings with respect to either speed, quality or the abil-
ity to generalize to multiple textures. The feed-forward literature
largely identifies optimization in general as the cause of poor per-
formance, not the back-propagation method specifically. Due to the
belief that optimization is inherently slow, the previous literature fo-
cuses exclusively on approximating the final result of optimization
through closed-form solutions and custom network training. We
challenge this belief and introduce a hybrid approach, a method of-
fering the benefits of both the optimization and inference categories
while avoiding their respective shortcomings. The key idea is to re-
tain a robust optimization process that matches feature statistics, but
move the process from image space deep into the networks feature
space. Therefore, we remove the neural network transform from the
expensive optimization loop and instead transform the deep neural
network activation values directly. This allows us to (1) avoid the
considerable overhead of inferring the neural network in each opti-
mization pass and (2) frame the problem in a more straightforward
way, making larger gains per iteration significantly reducing the
overall number of steps.

Our proposed algorithm combines the best ideas from previously
unrelated streams of research, pairing a relatively strong and com-
putationally efficient representation with a relatively robust and
computationally efficient generative process. It is by no means an
exhaustive study of all combinations of representations and gener-
ative processes, therefore, we do not make the claim that this is
the theoretically optimal solution. Rather, this is a practical sys-
tem that outperforms the current state of the art, performing well
across the key trade-offs: visual quality, speed and generalization.
This system is motivated by key insights gained through studying
the underlying theory of texture synthesis.

Our algorithm mimics the back-propagation texture optimization
process through an optimal transport-based feature transformation
within the bottleneck layer of a series of multi-scale auto-encoder
loops, similar to the strategy presented in Universal Style Transfer
via Feature Transforms [Li et al. 2017a]. In this framework VGG-
19 [Simonyan and Zisserman 2014] pre-trained for computer vi-

sion is used as the encoder. A collection of layers are chosen from
the VGG network to represent image features at different sizes and
degrees of complexity. For each of these target layers a decoder
network symmetric to VGG-19 (up to that target layer) is trained to
invert feature space back into the original image. For consistency
we adopt the same target layers and decoder networks used in the
previous work.

Formally, for texture synthesis the goal is to take an input source
texture S and synthesize a unique but visually similar output texture
O. This is achieved by passing both S and O through VGG-19
and gathering the resulting N feature maps for the activations at a
target layer l. This is denoted as Sl and Ol where l denotes one
of the following layers: Relu5 1, Relu4 1, Relu3 1, Relu2 1 and
Relu1 1.

3.1 Optimal Transport
Given a pair of N -dimensional feature distributions Sl and Ol, op-
timal transport is used to modify the activation values for Ol so
that the first order statistics match those of Sl before decoding back
into image space. We use the sliced histogram matching approach
provided in the related color transfer [Pitie et al. 2007] and tex-
ture mixing [Rabin et al. 2012] literature. By ”slice” we refer
to taking a random N-Dimensional unit vector, building a new N-
Dimensional basis orthogonal to that vector and projecting the PDF
onto that new basis. This is equivalent to a random rotation of the
PDF. Following the neural texture synthesis literature, this feature
transformation can be seen as a generalization of the previously
proposed histogram distance [Risser et al. 2017] to operate on a
random orthogonal basis of the N -dimensional space. By perform-
ing this process in an iterative loop across many random basis, the
process robustly matches feature interdependence between the di-
mensions. This robust feature matching achieves the same goal as
the Gram/Covariance, making them unnecessary and leaving only
the sliced histogram distance as a term to be minimized. This has
the advantage of simplifying the original feature distance by Risser,
removing the need for two distance functions that are difficult to
jointly minimize.

Iterative reduction of feature distance through sliced histogram
matching within an auto-encoder offers a best-of-both-worlds so-
lution, as it maintains the robust feature transformation of a back-
propagation method while achieving the efficiency of feed-forward
methods. As seen in figure 3, the accuracy of texture features being
transferred is directly proportional to the number of slices matched.

Content 10 Slices 20 Slices 50 Slices

Style 100 Slices 200 Slices 300 Slices

Figure 3: Increasing the number of histogram slices correlates
visually to an increase in style similarity. The larger swirls and
higher complexity star features become prominent as the number
of slices are increased. These images were processed through the
Relu5 1 autoencoder only, starting from the content image.

3.2 Full Algorithm
The one advantage of a back-propagation based image reconstruc-
tion method over our series of chained auto-encoders is back-
propagation’s ability to optimize the image being generated to-
wards multiple PDF targets during each iteration. Within the VGG
network, we match PDFs at layers: Relu5 1, Relu4 1, Relu3 1,
Relu2 1 and Relu1 1 in that ordering. Because we cycle through
image− > encoder− > transform− > decoder− > image
for each layer, each layer is optimally transported in isolation from
the others and optimal matches at coarse layers can drift from their
ideal state as the process moves to shallow layers. This problem
can be mitigated with an additional global loop that runs the entire
process multiple times. To keep the algorithm fast, the number of
random slices can be reduced in each pass so that the total number
of slices are maintained. This achieves the same effect as back-
propagation of keeping all layers optimized jointly. In practice we
find that only a small number of global iterations are necessary to
achieve good alignment between the layers (3-6 loops depending
on speed/quality trade off).

Input: texture image S
Output: output image O

1 Function Main:
2 O = noise
3 globalPasses = 5
4 for globalLooper = 0 to globalPasses step 1 do
5 for layer = 5 to 1 step 1 do
6 S layer = VGG[layer](S)
7 O layer = VGG[layer](O)
8 O layer = OT(O layer, S layer, globalPasses)
9 O = VGG Decoder[layer](O layer)

10 return O

11 Function OT(O layer, S layer, passes):
12 N = getTensorChannels(O layer)
13 sliceCount = N ÷ passes
14 for slice = 0 to sliceCount step 1 do
15 basis = randomBasis(N)
16 rotated-S layer = Project(basis, S layer)
17 rotated-O layer = Project(basis, P layer)
18 rotated-O layer = MatchSlice(rotated-O layer,

rotated-S layer)
19 O layer = DeProject(basis, rotated-O layer)

20 return O layer

21 Function MatchSlice(O layer, S layer):
22 bins = 128
23 N = getTensorChannels(O layer)
24 for dimLooper = 0 to N step 1 do
25 O dim = O layer[:, :, dimLooper]
26 S dim = S layer[:, :, dimLooper]
27 O dim = MatchHistogram(bins, O dim, S dim)
28 O layer[:, :, dimLooper] = O dim

29 return O layer

3.3 Optimal Transport on Principal Components
Feature space resulting from the VGG transformation to deeper lay-
ers of the network becomes increasingly sparse. This implies that
the representation for texture exists in a lower dimensional subspace
of the one produced by VGG. We exploit this characteristic to accel-
erate the algorithm by performing optimal transport on the subspace
identified through Principle Component Analysis (PCA). This ex-
tension to the algorithm does not require any modifications to the

optimal transport algorithm presented. PCA is carried out for the
texture/style features at the bottleneck layer of the auto-encoder and
all network features are projected onto this basis. We choose the
top N basis vectors of highest variance that cumulatively account
for 90% of total variance.

We have analyzed the cumulative variance of each layers PCA ba-
sis, averaged over 100 random textures as shown in figure 4. We
have confirmed that our feature space can be effectively represented
by a much lower dimensional subspace.

Relu5_1 Dimensions

C
um

ul
at

iv
e

V
ar

ia
nc

e

0.00

0.25

0.50

0.75

1.00

100 200 300 400 500

Relu4_1 Dimensions

C
um

ul
at

iv
e

V
ar

ia
nc

e

0.00

0.25

0.50

0.75

1.00

100 200 300 400 500

Relu3_1 Dmensions

C
um

ul
at

iv
e

V
ar

ia
nc

e

0.00

0.25

0.50

0.75

1.00

50 100 150 200 250

Relu2_1 Dimensions

C
um

ul
at

iv
e

V
ar

ia
nc

e

0.00

0.25

0.50

0.75

1.00

25 50 75 100 125

Relu1_1 Dimensions

C
um

ul
at

iv
e

V
ar

ia
nc

e

0.00

0.25

0.50

0.75

1.00

10 20 30 40 50 60

Figure 4: Cumulative variance of each layers PCA basis, averaged
over 100 random textures.

This observation is further reinforced empirically through visual
quality of the results as illustrated in figure 5 where a side-by-side
comparison is given using the full VGG layer vs. the principle com-
ponents that account for the top 90% of variance within the space.
We observe marginal perceptual difference when introducing PCA,
only a small bias towards generating globally homogeneous tex-
tures. This reinforces our belief that our feature representation for
texture exists in a lower dimensional subspace of VGG.

PCA

No PCA

Input

Figure 5: We observe that texture can be matched through a lower
dimensional subspace of VGG.

Input

25
6

x
25

6
51

2
x

51
2

10
24

 x
 1

02
4

Multi-scaleSingle-scale

Figure 6: Top Row: input, mutli-scale and single-scale synthesis
are shown at 256x256 resolution. Being the base resolution, multi-
scale only operates on a single level and therefore produces the
same result as single-scale. Middle Row: Increasing the resolution
to 512x512 shows how multi-scale and single-scale strategies differ.
Multi-scale maintains and refines the global pattern of the top row
while the single-scale algorithm produces a different global distri-
bution and loses the larger circular features present in the input.
Third Row: Increasing the resolution of all images to 1024x1024
highlights that the mutli-scale approach is able to consistently re-
fine the previous level. The single-scale approach can only repre-
sent the smallest of image features at this resolution and fails to
reproduce much of the input texture.

3.4 Multiresolution Synthesis
For texture synthesis, style transfer and mixing, we have found re-
sults are generally improved by a coarse-to-fine synthesis using the
same image pyramids strategy introduced by Risser et al. [2017].
Given both the exemplar images and desired synthesis image res-
olutions, we build a pyramid by successively dividing the image
widths and heights by a ratio of two until any image in the set falls
below 256 pixels in either dimension. This ensures that the recep-
tive field has sufficient coverage at the coarsest pyramid level in or-
der to represent large structures in the feature space. The synthesis
results of one pyramid level is up-scaled to the resolution of the next
pyramid level using a bicubic filter and further refined through re-
peating the full algorithm. The Coarse-to-fine image-pyramid syn-
thesis strategy makes it possible to synthesize large and complex
texture or style features for images of a resolution necessary for
real-world use as illustrated in figure 6. We use pyramids for all
results in this paper unless otherwise indicated.

4 Extensions to Other Applications
Optimal transport offers an intuitive and principled framework for
generalizing texture synthesis to the highly-related problems of
style transfer and texture mixing. Within an optimal transport
framework the problem of texture synthesis is one of synthesizing
an output image O locally that exhibits the same global first order
feature statistics of some exemplar source texture image S across
the range of all meaningful feature sizes.

Content

Content Strength = 0

1

Style

Figure 7: This illustration highlights the effects of content strength weighting on the style transfer process, showing a selection of values
ranging betwene 0 and 1 for the same content and style image pair.

Te
xt

ur
e

Sy
nt

he
si

s

Li et al. 17 Ours

St
yl

e
Tr

an
sf

er

Figure 8: Note: these images are 512x512 and do not use the mul-
tiresolution image-pyramid synthesis strategy for either result. Our
optimal transport algorithm can be directly compared against the
WCT of Li et al. For both texture synthesis and style transfer we see
that optimal transport is superior at reproducing the texture/style
features while also suffering from fewer feature blending/smearing
artifacts. In particular, note for Style Transfer that Optimal Trans-
port does not only do a superior job at reproducing the style, but
it also outperforms WCT at preserving the content features as well.
This shows that our method is superior at finding a new unique
PDF that better represents both images, rather than simply playing
”tug-of-war” against the two.

4.1 Style Transfer
Style transfer expands upon the texture synthesis problem state-
ment by introducing a second exemplar image, a ”content image” C
which is also matched during synthesis, but weighted so the synthe-
sis PDF favors the content image at coarser features while favoring
the style/texture image S at the finer features. In addition, the con-
tent PDF is matched in a non-local way, where pixel coordinates
targets specific locations in feature space.

Optimal Transport through sliced histogram matching is uniquely
well suited for high quality style transfer within a fast feed-forward
approach due to its iterative nature. Before optimization, we first
align C by subtracting out its mean and adding the mean of S.

During optimization, after each MatchSlice operation and subse-
quent de-projection, a MatchContent operation is run that updates
O layer using the equation O layer = O layer + (C layer −
O layer) × contentStrength. Where contentStrength is a
user controllable scalar that determines the degree of influence that
the content image has on the final output O as shown in figure
7. When performing Style Transfer we apply a content match-
ing operation only at layers Relu5 1, Relu4 1 and Relu3 1, where
contentStrength is divided by 2 for for Relu4 1 and divided by 4
at Relu3 1.

Our optimal transport algorithm is an optimization process. Be-
cause we pair a content match after each iterative slice of the style
match algorithm. This results in a style transfer algorithm where the
content and style features optimize together, rather than the ”tug-
of-war” behavior seen by the WCT approach. This is reflected in
figure 8 where both the style and content feature are more preva-
lent in our approach over that of [Li et al. 2017a]. This subtle but
important distinction is why our approach is able to achieve style
transfer results akin to back-propagation methods, but using a fast
feed-forward approach.

4.2 Color
The original neural style transfer algorithm entangles color within
the feature representation and therefore transfer of the style image’s
colors is intrinsic to the algorithm. Gatys highlights this as a poten-
tial shortcoming of the original method [Gatys et al. 2016a] and
explores two ideas for retaining the content image’s colors. These
two methods include: (1) a basic histogram match of second or-
der color statistics, explored as a separate process from the style
transfer algorithm. (2) Luminance-only style transfer of greyscale
images, where the original colors of the content image are directly
copied into the final result. Gatys explores multiple tweaks to these
algorithms and compares the various strengths and weaknesses of
each option, concluding that both solutions are viable in some sit-
uations but neither solution is strictly correct. They close by sug-
gesting that future work should unify the two statistical models of
color and CNN activations into a single framework.

We present optimal transport as this unified framework, combin-
ing color and feature under one model, manipulated with a sin-
gle algorithm. Control over color is achieved by using the three-
dimensional color values directly as a final probability density func-
tion that sits on top of the multi-scale auto-encoder stack. Rela-

(a) Content (b) Style (c) Output

(d) Optimal Transport Color Transfer (e) Luminance Style Transfer (f) Combined Approach

Figure 9: Images (a) and (b) show content and style images while image (c) shows our result without color transfer. Image (d) shows a global
color transfer of content images onto our result. Notice that the local colors of objects in the content image are not transferred, only the
global appearance. Image (e) shows the luminance result, where the effect of style transfer is softened and the brush strokes do not align with
the colors. Image (f) is our combined approach where image (e) is used to locally anchor color values during the global optimal transport
process.

tive to the second order histogram matching of the previous work,
our optimal transport-based color transfer achieves a more accurate
mapping of the content image colors, as studied in the color transfer
literature [Pitie et al. 2007]. In addition, we combine the strengths
of both direct color transfer and luminance based style transfer. Di-
rect color transfer is a global operation that does not preserve the
local colors. Luminance based style transfer weakens the overall
style transfer effect while dependencies between luminance and the
color channels are lost in the output. This is particularly apparent
for styles with prominent brushstrokes as colors do not align to the
stroke pattern. We propose a combined method that utilizes both
strategies within the unified framework, overcoming each of their
respective limitations.

The first step in our combined approach is to reproduce the lumi-
nance based style transfer proposed by Gatys. Starting from the
content image C and the final output O of our style transfer pro-
cess, we convert both from RGB to HSL color space. We combine
the hue and saturation (HS) components from the content image
and the light (L) component from our style transfer result. This is
illustrated in figure 9 where C is shown in (a), O is shown in (c)
and (e) is produced by taking the HS components from (a) and the
L component from (c). We convert the final result back into RGB
space, which is used for the remainder of the color transfer pro-
cess. Next we perform our full optimal transport algorithm that we
have presented for style transfer but we use the three-channel RGB
values of each image directly rather than the activation values pro-
duced by VGG. When performing our optimal transport algorithm
for color transfer, we replace our C image with the ”luminance style
transfer” that we just created. We update S with the original input
content image, because this image contains the color properties that
we want transferred. Our optimization process thus robustly trans-
fers the global content image color statistics while also anchoring
specific colors to local image regions. Again referring to figure 9,
this process is illustrated in (d) which shows our optimal transport
algorithm starting from (c) and using (a) as the source image S and
no content image C. While this robustly captures the color statistics
of (a), it fails to do so in a manner that retains the original location
of the colors. By introducing (e) into the optimal transport process
as a content image C, the algorithm is able to robustly transfer the

colors of (a) while anchoring those colors to their desired locations
as shown in (f).

4.3 Texture Mixing
The goal of texture mixing is to interpolate and blend the features
of two or more textures. This can be used to create novel hybrid
textures or to create the complex transitions between different tex-
tures within a painting application. A naive interpolation of mul-
tiple distinct textures at the pixel level will lead to ghosting, seam
and blurring artifacts and will not produce novel interpolations of
the texture features. The topic of texture mixing has been studied
through the main bodies of texture synthesis research: non paramet-
ric [Darabi et al. 2012; Diamanti et al. 2015], parametric: [Heeger
and Bergen 1995; Portilla and Simoncelli 2000] and recent neu-
ral approaches, some of which building from the recent parametric
neural texture synthesis algorithm [Li et al. 2017a; Wang et al.
2018]. Recently, methods for texture mixing have adopted an ad-
versarial strategy to learn a custom latent space for texture features
[Yu et al. 2019]. While these techniques offer many viable methods
for texture mixing, we believe there is still an opportunity to solve
the mixing problem in a way that is: fast, works on a broad range of
textures, is simple to implement, does not require custom training
and generates high quality results.

We propose optimal transport within a deep neural feature space as
a viable method for achieving all these goals. We pose this strategy
as a modernization of the earlier work on optimal transport for tex-
ture mixing [Rabin et al. 2012] with the main deviation from the
earlier approach being the use of a trained CNN as the transforma-
tion function between image and feature space. The earlier work
employed a steerable wavelet pyramid as their feature representa-
tion, which was considered state-of-the-art at the time, but was not
able to achieve visually pleasing results.

Mixing two textures A and B can be achieved through interpolation
of their first order statistics, yielding a ”mixed” feature distribution
that is used for S in the synthesis algorithm. Producing this mixed
feature distribution can be achieved by first computing the optimal
transport mapping from A to B, AB . A naive solution would be to
directly interpolate the values where S = A×(1−i)+AB×i where

A

A

B

B

Figure 10: Comparisons of texture mixing against Wang et al. 2018 (rows 1 and 3) and our optimal transport scheme (rows 2 and 4).

i is the interpolation value between 0 and 1. While this approach
achieves satisfactory results in many scenarios, the optimal trans-
port mapping is an approximate operation and can lead to a small
degree of deviation from the original distribution. This results in an
algorithm where synthesis reproduction quality is superior for tex-
ture A as it is only mapped once during synthesis while texture B
is first mapped during interpolation and the result is then remapped
a second time during synthesis, leading to compounding error.

To achieve uniform synthesis quality, we introduce a second op-
timal transport mapping from B to A, BA as well as a ”mixing
mask” that contains a random 0-1 interpolation value for each pixel,
following a uniform distribution across the image. We generate a
mixed S using the following equation:

mix = dmixingMask − ie

S = (A×(1−i)+AB×i)×mix+(BA×(1−i)+B×i)×(1−mix)

Mixing through optimal transport achieves state-of-the-art results
without the need for custom training. We compare our results
against two recent neural network based texture synthesis mixing
techniques. Figure 10 compares our approach against the method
presented by [Wang et al. 2018] that extends the earlier Gram
matrix-based neural texture synthesis algorithm for the problem of
mixing. The results are comparable with ours as both methods pro-
duce new hybrid features that share characteristics of both exemplar
texture A and B and both methods are able to smoothly interpolate
this feature hybridization. Our method in some cases is able to
achieve a more accurate reproduction of the input textures and runs
orders of magnitude faster. Compared against [Li et al. 2017a], our
approach is able to achieve a superior hybridization at the feature
level and does not exhibit the spatial ”tug-of-war” appearance be-
tween incompatible features.

4.4 User Controls
The utility of texture synthesis as an artistic tool is marked by how
easily and intuitively a user can guide the process and control the
final output. Previous user controls for texture synthesis methods
typically employ the ”painting-by-numbers” strategy, where dis-
crete masks are used to divide-and-conquer the global synthesis op-
eration into a collage of local and independent parametric models,
one for each associated texture ID in the mask. This is effective for

A

i = 0.25

B

OursLi et al. 17

i = 0.50

i = 0.75

Figure 11: Comparisons of texture mixing against Li et al. 2017,
we achieve a more consistent homogeneous mixture where deep fea-
tures appear to interpolate rather than fight for local dominance.

large coherent regions, but is marked by poor transition areas be-
tween textures, along with an efficiency cost associated with each
additional texture ID. In contrast, optimal transport can be guided
simply by re-balancing and re-weighting the feature space statistics.

Given masks that assign a texture ID to each pixel in the content
and style images, there are two modifications added to the core al-
gorithm. First, the target PDF S must be re-balanced so that its
feature histogram with respect to texture IDs matches the desired
histogram for the content mask. This can be achieved by simply
removing or duplicating samples from each histogram bin at ran-
dom. During synthesis O requires an additional processing step so
that image regions with a given texture ID are more likely to map
to similar texture ID regions of S. We found that a naive approach
can achieve satisfactory results. Before the optimal transport oper-
ation, re-weight the the distribution for each content histogram bin
so that the distributions mean matches the distribution mean of the
corresponding bin in the target histogram. While this is a relatively
loose constraint, it appears to sufficiently bias the optimal trans-

Figure 12: Top row: input image and corresponding style mask.
Bottom row: New user defined target ”content” mask and corre-
sponding synthesized output.

port operation so that features are anchored to the desired image
locations while allowing for the transition areas between texture re-
gions enough flexibility to map to their optimal region of the the
target PDF S.

This is illustrated in figure 12 where a simple heterogeneous texture
containing two continuous homogeneous sub-textures are masked
and re-targeted using simple re-balancing and re-weighting. We see
that the content mask sufficiently guides the synthesis process of co-
herent homogeneous regions while allowing the optimal transport
process enough flexibility to reproduce the novel and complex tran-
sition features between regions, shown here as peeling and crack-
ing plaster. This is in direct contrast to previous divide-and-conquer
methods that utilize multiple parametric models [Risser et al. 2017]
as shown in figure 13. This illustration shows a more complex im-
age comprising more distinct homogeneous textures that have more
sophisticated and incomplete transitions between regions. We high-
light one such synthesis border region where bush features are re-
targeted on the left and river features on the right. No corresponding
border feature exists in the input and we see the previous parametric
approach [Risser et al. 2017] struggles with this problem, producing
a sharp and discontinuous seam between the masked regions. Our
method however is able to achieve more natural transitions both in
ambiguous regions as well as border regions in general.

This section has highlighted the texture painting use case because
it most directly illustrates the power of statistics re-balancing and
re-weighting as a simple means of guiding the optimal transport
process. It should be noted that this approach can and should also
be used to guide the style transfer and texture mixing process as
well. The results shown in this section use the full texture synthesis
and style transfer algorithm with the content strength set to zero and
the starting image set to noise.

5 Quality
We now discuss some advantages of our results. By ensuring
that the full statistical distribution of exemplar features are pre-
served, our optimal transport approach addresses the instabilities
commonly observed in neural texture synthesis methods that uti-

lize parametric texture models or other summary statistics. While
adding a histogram loss [Risser et al. 2017] to the parametric model
can also fix instabilities, this approach is more complicated and re-
quires multiple loss functions that are difficult to keep in balance.
It also relies on the use of back-propagation training, making it too
slow and impractical for real-world usage. We compare our opti-
mal transport optimization results against the WCT approach [Li
et al. 2017a] because both share the same auto-encoder synthesis
strategy and because the WCT transform behaves as a proxy for
the Gram/Covariance matrix texture models commonly used in the
related literature.

We find that our optimal transport approach outperforms the WCT
strategy in multiple ways:

1. Larger structured features in the texture/style are better rep-
resented by the first-order joint statistics of the full feature
distribution.

2. Feature blending/smearing artifacts of WCT are significantly
reduced by our approach due to the additional ”slices” captur-
ing a more detailed view of the feature distribution.

3. Content and style features are optimized together, rather than
competing as discussed in section 4.1.

4. Our optimal transport framework unifies style and color, a
known open problem.

5. Mixing textures produces a more homogeneous result with
more convincing interpolations of individual features.

6. A simple re-balancing and re-weighting strategy allows users
to guide both the texture synthesis and style transfer process.

Side-by-side comparisons between the WCT and our Optimal
Transport method are provided in figures 14 and 15.

Speed, is a key benefit of our algorithm. Running times for our
method are as follows. We used a machine with four physical cores
(Intel Core i5-6600k), with 3.5 GHz, 64 GB of RAM, and an Nvidia
Quadro P6000 GPU with 24 GB of GPU RAM, running Ubuntu.
For a single 1024x1024 image, our method takes 23 seconds uti-
lizing PCA and 84 seconds without PCA. This is in contrast to the
back-propagation based optimization methods such as Risser et al.
[2017] and Gatys et al. [2016b] that takes tens of minutes. Our
approach used three pyramid levels. For style transfer we add a
progressively weighted content matching at relu3 1, relu4 1 and
relu5 1 which increases the running time by a negligible amount.
These metrics were measured over 100 full image synthesis opera-
tions. We believe this run-time performance makes optimal trans-
port an attractive candidate for an interactive artist tool, particularly
when only sub-regions of the image are edited in real time. Our
current implementation utilizes a mixture of CPU and GPU pro-
cessing, incurring a large performance penalty when synchronizing
memory. We believe that significant performance improvements
could be achieved through a strict GPU implementation.

6 Conclusion
We believe that directly matching feature statistics is the native
problem formulation for Texture Synthesis and by doing so, we
are able to use optimal transport to achieve unprecedented speed
and quality for texture synthesis while also solving a wide range
of Texture Synthesis-based problems that were previously believed
to require separate techniques or non-trivial extensions to the core
algorithm. We propose a simple, well-principled method for Tex-
ture Synthesis and its many sub-fields: Style Transfer, Texture Mix-
ing, Inverse Texture Synthesis and Texture Painting. We present N-
Dimensional probability density function transformations through

Input Risser et a. 17 Ours

Figure 13: Comparison against the previous painting-by-numbers approach that utilizes multiple parametric models. We notice superior
results at the border regions between different textures.

an iterative sliced histogram-matching operation as the core com-
ponent to a truly universal and general purpose texture synthesis
algorithm.

Future Work We believe our approach can lay the groundwork for
several interesting future research directions. We believe that syn-
thesis quality could be further improved through both the study of
superior encoding networks that are designed and trained specifi-
cally for texture recognition as well as methods for training a more
accurate decoder network. We view the image degradation resulting
from VGG encoding followed by decoding as the key shortcoming
of ours and previous methods that rely on the VGG auto-encoder
framework [Li et al. 2017a] and warrants further exploration. This
paper was largely inspired by histogram-guided texture synthesis
along with a body of color transfer literature. We believe this pa-
per serves as a bridge connecting the two fields and opens the way
for future cross-pollination of these theoretically related yet histor-
ically separate topics.

Acknowledgments We would like to acknowledge and thank
Keyang Xiang for his assistance with implementation and Akash
Garg, David Harmon and Marc Ellens for their peer reviews and
general suggestions for improving this paper.

References

AITTALA, M., AILA, T., AND LEHTINEN, J. 2016. Reflectance
modeling by neural texture synthesis. ACM Transactions on
Graphics (TOG) 35, 4, 65.

BARNES, C., SHECHTMAN, E., FINKELSTEIN, A., AND GOLD-
MAN, D. 2009. Patchmatch: a randomized correspondence
algorithm for structural image editing. ACM Transactions on
Graphics-TOG 28, 3, 24.

BARNES, C., ZHANG, F.-L., LOU, L., WU, X., AND HU, S.-M.
2015. Patchtable: efficient patch queries for large datasets and
applications. ACM Transactions on Graphics (TOG) 34, 4, 97.

BERGER, G., AND MEMISEVIC, R. 2016. Incorporating
long-range consistency in cnn-based texture generation. arXiv
preprint arXiv:1606.01286.

BURT, P., AND ADELSON, E. 1983. The laplacian pyramid as a
compact image code. IEEE Transactions on communications 31,
4, 532–540.

CHANG, H., YU, F., WANG, J., ASHLEY, D., AND FINKELSTEIN,
A. 2016. Automatic triage for a photo series. ACM Transactions
on Graphics (TOG).

CHEN, T.-Q., AND SCHMIDT, M. 2016. Fast patch-based style
transfer of arbitrary style. arXiv preprint arXiv:1612.04337.

CHEN, T. Q., AND SCHMIDT, M. 2016. Fast patch-based style
transfer of arbitrary style. arXiv preprint arXiv:1612.04337.

DARABI, S., SHECHTMAN, E., BARNES, C., GOLDMAN, D. B.,
AND SEN, P. 2012. Image melding: Combining inconsistent
images using patch-based synthesis. ACM Trans. Graph. 31, 4,
82–1.

DIAMANTI, O., BARNES, C., PARIS, S., SHECHTMAN, E., AND
SORKINE-HORNUNG, O. 2015. Synthesis of complex image ap-
pearance from limited exemplars. ACM Transactions on Graph-
ics (TOG) 34, 2, 22.

EFROS, A. A., AND FREEMAN, W. T. 2001. Image quilting
for texture synthesis and transfer. In Proceedings of the 28th
annual conference on Computer graphics and interactive tech-
niques, ACM, 341–346.

EFROS, A. A., AND LEUNG, T. K. 1999. Texture synthesis
by non-parametric sampling. In Computer Vision, 1999. The
Proceedings of the Seventh IEEE International Conference on,
vol. 2, IEEE, 1033–1038.

FIŠER, J., JAMRIŠKA, O., LUKÁČ, M., SHECHTMAN, E.,
ASENTE, P., LU, J., AND SỲKORA, D. 2016. Stylit:
illumination-guided example-based stylization of 3d renderings.
ACM Transactions on Graphics (TOG) 35, 4, 92.

GATYS, L., ECKER, A. S., AND BETHGE, M. 2015. Texture
synthesis using convolutional neural networks. In Advances in
Neural Information Processing Systems, 262–270.

GATYS, L., BETHGE, M., HERTZMANN, A., AND SHECHTMAN,
E. 2016. Preserving color in neural artistic style transfer.

GATYS, L. A., ECKER, A. S., AND BETHGE, M. 2016. Image
style transfer using convolutional neural networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2414–2423.

GATYS, L., ECKER, A., BETHGE, M., HERTZMANN, A., AND
SHECHTMAN, E. 2017. Controlling perceptual factors in neural
style transfer. 3985–3993.

HACOHEN, Y., SHECHTMAN, E., GOLDMAN, D. B., AND
LISCHINSKI, D. 2011. Non-rigid dense correspondence with ap-
plications for image enhancement. ACM transactions on graph-
ics (TOG) 30, 4, 70.

HE, K., ZHANG, X., REN, S., AND SUN, J. 2016. Deep residual
learning for image recognition. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 770–778.

HEEGER, D. J., AND BERGEN, J. R. 1995. Pyramid-based texture
analysis/synthesis. In Proceedings of the 22nd annual confer-
ence on Computer graphics and interactive techniques, ACM,
229–238.

HERTZMANN, A., JACOBS, C. E., OLIVER, N., CURLESS, B.,
AND SALESIN, D. H. 2001. Image analogies. In Proceedings

(c) Ours(b) Li et al. 17(a) Input (c) Ours(b) Li et al. 17(a) Input

Figure 14: Results of the (b) WCT of Li et al. 2017 in comparison to (c) our Optimal Transport approach.

Li
 e

t a
l.

17
O

ur
s

Li
 e

t a
l.

17
O

ur
s

Li
 e

t a
l.

17
O

ur
s

Figure 15: Results of our method for style transfer compared with the WCT method of Li et al. 2017.

of the 28th annual conference on Computer graphics and inter-
active techniques, ACM, 327–340.

IOFFE, S., AND SZEGEDY, C. 2015. Batch normalization: Ac-
celerating deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167.

JOHNSON, J., ALAHI, A., AND FEI-FEI, L. 2016. Percep-
tual Losses for Real-Time Style Transfer and Super-Resolution.
Springer International Publishing, Cham, 694–711.

JOHNSON, J., 2015. neural-style. https://github.com/jcjohnson/
neural-style.

KALANTARI, N. K., WANG, T.-C., AND RAMAMOORTHI, R.
2016. Learning-based view synthesis for light field cameras.
ACM Transactions on Graphics (TOG) 35, 6, 193.

KOLKIN, N., SALAVON, J., AND SHAKHNAROVICH, G. 2019.
Style transfer by relaxed optimal transport and self-similarity. In
The IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. 2012.
Imagenet classification with deep convolutional neural networks.
In Advances in neural information processing systems, 1097–
1105.

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK,
A. 2003. Graphcut textures: image and video synthesis using
graph cuts. In ACM Transactions on Graphics (ToG), vol. 22,
ACM, 277–286.

KWATRA, V., ESSA, I., BOBICK, A., AND KWATRA, N. 2005.
Texture optimization for example-based synthesis. ACM Trans-
actions on Graphics (ToG) 24, 3, 795–802.

LEFEBVRE, S., AND HOPPE, H. 2005. Parallel controllable texture
synthesis. In ACM Transactions on Graphics (ToG), vol. 24,
ACM, 777–786.

LEFEBVRE, S., AND HOPPE, H. 2006. Appearance-space texture
synthesis. ACM Transactions on Graphics (TOG) 25, 3, 541–
548.

LI, C., AND WAND, M. 2016. Combining markov random fields
and convolutional neural networks for image synthesis. arXiv
preprint arXiv:1601.04589.

LI, Y., FANG, C., YANG, J., WANG, Z., LU, X., AND YANG,
M.-H. 2017. Diversified texture synthesis with feed-forward
networks. CVPR.

LI, Y., FANG, C., YANG, J., WANG, Z., LU, X., AND YANG,
M.-H. 2017. Universal style transfer via feature transforms.
NIPS.

LU, M., ZHAO, H., YAO, A., CHEN, Y., XU, F., AND ZHANG, L.
2019. A closed-form solution to universal style transfer. In The
IEEE International Conference on Computer Vision (ICCV).

LUKÁČ, M., FIŠER, J., BAZIN, J.-C., JAMRIŠKA, O., SORKINE-
HORNUNG, A., AND SỲKORA, D. 2013. Painting by fea-
ture: texture boundaries for example-based image creation. ACM
Transactions on Graphics (TOG) 32, 4, 116.

LUKÁČ, M., FIŠER, J., ASENTE, P., LU, J., SHECHTMAN, E.,
AND SỲKORA, D. 2015. Brushables: Example-based edge-
aware directional texture painting. In Computer Graphics Fo-
rum, vol. 34, Wiley Online Library, 257–267.

MAHENDRAN, A., AND VEDALDI, A. 2014. Understanding
deep image representations by inverting them. arXiv preprint
arXiv:1412.0035.

MORDVINTSEV, A., AND CHRISTOPHER, O. 2015. Inceptionism:
Going deeper into neural networks.

OLSZEWSKI, K., LIM, J. J., SAITO, S., AND LI, H. 2016. High-
fidelity facial and speech animation for vr hmds. ACM Transac-
tions on Graphics (TOG) 35, 6, 221.

PATHAK, D., KRÄHENBÜHL, P., DONAHUE, J., DARRELL, T.,
AND EFROS, A. 2016. Context encoders: Feature learning by
inpainting.

PITIE, F., KOKARAM, A., AND DAHYOT, R. 2007. Automated
colour grading using colour distribution transfer. Computer Vi-
sion and Image Understanding.

PORTILLA, J., AND SIMONCELLI, E. P. 2000. A parametric tex-
ture model based on joint statistics of complex wavelet coeffi-
cients. International journal of computer vision 40, 1, 49–70.

RABIN, J., PEYRÉ, G., DELON, J., AND BERNOT, M. 2012.
Wasserstein barycenter and its application to texture mixing.
In Scale Space and Variational Methods in Computer Vision,
Springer Berlin Heidelberg, 435–446.

RISSER, E., PIERRE, W., AND BARNES, C. 2017. Stable and
controllable neural texture synthesis and style transfer using his-
togram losses. arXiv preprint arXiv:1701.08893.

RITTER, L., LI, W., CURLESS, B., AGRAWALA, M., AND
SALESIN, D. 2006. Painting with texture. In Rendering Tech-
niques, 371–376.

SELIM, A., ELGHARIB, M., AND DOYLE, L. 2016. Painting style
transfer for head portraits using convolutional neural networks.
ACM Transactions on Graphics (TOG) 35, 4, 129.

SENDIK, O., AND COHEN-OR, D. 2017. Deep correlations for
texture synthesis. ACM Trans. Graph..

SIDDIQUI, H., AND BOUMAN, C. A. 2008. Hierarchical color
correction for camera cell phone images. IEEE Transactions on
Image Processing 17, 11, 2138–2155.

SIMONYAN, K., AND ZISSERMAN, A. 2014. Very deep con-
volutional networks for large-scale image recognition. CoRR
abs/1409.1556.

TSAI, Y.-H., SHEN, X., LIN, Z., SUNKAVALLI, K., AND YANG,
M.-H. 2016. Sky is not the limit: Semantic-aware sky replace-
ment. ACM Transactions on Graphics (TOG) 35, 4, 149.

ULYANOV, D., LEBEDEV, V., VEDALDI, A., AND LEMPITSKY,
V. 2016. Texture networks: Feed-forward synthesis of textures
and stylized images. arXiv preprint arXiv:1603.03417.

ULYANOV, D., VEDALDI, A., AND LEMPITSKY, V. 2016. In-
stance normalization: The missing ingredient for fast stylization.
arXiv preprint arXiv:1607.08022.

USTYUZHANINOV, I., BRENDEL, W., GATYS, L., AND BETHGE,
M. 2016. Texture synthesis using shallow convolutional net-
works with random filters. arXiv preprint arXiv:1606.00021v1.

WANG, X., OXHOLM, G., ZHANG, D., AND WANG, Y.-F. 2017.
Multimodal transfer: A hierarchical deep convolutional neural
network for fast artistic style transfer. CVPR.

WANG, Z.-M., XIA, G.-S., AND ZHANG, Y.-P. 2018. Tex-
ture mixing by interpolating deep statistics via gaussian models.
arXiv preprint arXiv:1807.11035.

https://github.com/jcjohnson/neural-style
https://github.com/jcjohnson/neural-style

WEI, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis using
tree-structured vector quantization. In Proceedings of the 27th
annual conference on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing Co., 479–488.

WEI, L.-Y., HAN, J., ZHOU, K., BAO, H., GUO, B., AND SHUM,
H.-Y. 2008. Inverse texture synthesis. ACM Trans. Graph. 27,
3.

YAN, Z., ZHANG, H., WANG, B., PARIS, S., AND YU, Y. 2016.
Automatic photo adjustment using deep neural networks. ACM
Transactions on Graphics (TOG) 35, 2, 11.

YANG, C., LU, X., LIN, Z., SHECHTMAN, E., WANG, O., AND
LI, H. 2016. High-resolution image inpainting using multi-scale
neural patch synthesis. arXiv preprint arXiv:1611.09969.

YU, N., BARNES, C., SHECHTMAN, E., AMIRGHODSI, S., AND
LUKAC, M. 2019. Texture mixer: A network for controllable
synthesis and interpolation of texture. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
12164–12173.

ZHU, J.-Y., KRÄHENBÜHL, P., SHECHTMAN, E., AND EFROS,
A. A. 2016. Generative visual manipulation on the natural
image manifold. In European Conference on Computer Vision,
Springer, 597–613.

