// SimplexNoise for C#
// Author: Heikki Törmälä
//This is free and unencumbered software released into the public domain.
//Anyone is free to copy, modify, publish, use, compile, sell, or
//distribute this software, either in source code form or as a compiled
//binary, for any purpose, commercial or non-commercial, and by any
//means.
//In jurisdictions that recognize copyright laws, the author or authors
//of this software dedicate any and all copyright interest in the
//software to the public domain. We make this dedication for the benefit
//of the public at large and to the detriment of our heirs and
//successors. We intend this dedication to be an overt act of
//relinquishment in perpetuity of all present and future rights to this
//software under copyright law.
//THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
//EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
//MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
//IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
//OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
//ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
//OTHER DEALINGS IN THE SOFTWARE.
//For more information, please refer to
namespace JBooth.VertexPainterPro.SimplexNoise
{
///
/// Implementation of the Perlin simplex noise, an improved Perlin noise algorithm.
/// Based loosely on SimplexNoise1234 by Stefan Gustavson
///
///
public class Noise
{
///
/// 1D simplex noise
///
///
///
public static float Generate(float x)
{
int i0 = FastFloor(x);
int i1 = i0 + 1;
float x0 = x - i0;
float x1 = x0 - 1.0f;
float n0, n1;
float t0 = 1.0f - x0*x0;
t0 *= t0;
n0 = t0 * t0 * grad(perm[i0 & 0xff], x0);
float t1 = 1.0f - x1*x1;
t1 *= t1;
n1 = t1 * t1 * grad(perm[i1 & 0xff], x1);
// The maximum value of this noise is 8*(3/4)^4 = 2.53125
// A factor of 0.395 scales to fit exactly within [-1,1]
return 0.395f * (n0 + n1);
}
///
/// 2D simplex noise
///
///
///
///
public static float Generate(float x, float y)
{
const float F2 = 0.366025403f; // F2 = 0.5*(sqrt(3.0)-1.0)
const float G2 = 0.211324865f; // G2 = (3.0-Math.sqrt(3.0))/6.0
float n0, n1, n2; // Noise contributions from the three corners
// Skew the input space to determine which simplex cell we're in
float s = (x+y)*F2; // Hairy factor for 2D
float xs = x + s;
float ys = y + s;
int i = FastFloor(xs);
int j = FastFloor(ys);
float t = (float)(i+j)*G2;
float X0 = i-t; // Unskew the cell origin back to (x,y) space
float Y0 = j-t;
float x0 = x-X0; // The x,y distances from the cell origin
float y0 = y-Y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
float y1 = y0 - j1 + G2;
float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords
float y2 = y0 - 1.0f + 2.0f * G2;
// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
int ii = i % 256;
int jj = j % 256;
// Calculate the contribution from the three corners
float t0 = 0.5f - x0*x0-y0*y0;
if(t0 < 0.0f) n0 = 0.0f;
else {
t0 *= t0;
n0 = t0 * t0 * grad(perm[ii+perm[jj]], x0, y0);
}
float t1 = 0.5f - x1*x1-y1*y1;
if(t1 < 0.0f) n1 = 0.0f;
else {
t1 *= t1;
n1 = t1 * t1 * grad(perm[ii+i1+perm[jj+j1]], x1, y1);
}
float t2 = 0.5f - x2*x2-y2*y2;
if(t2 < 0.0f) n2 = 0.0f;
else {
t2 *= t2;
n2 = t2 * t2 * grad(perm[ii+1+perm[jj+1]], x2, y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 40.0f * (n0 + n1 + n2); // TODO: The scale factor is preliminary!
}
public static float Generate(float x, float y, float z)
{
// Simple skewing factors for the 3D case
const float F3 = 0.333333333f;
const float G3 = 0.166666667f;
float n0, n1, n2, n3; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
float s = (x+y+z)*F3; // Very nice and simple skew factor for 3D
float xs = x+s;
float ys = y+s;
float zs = z+s;
int i = FastFloor(xs);
int j = FastFloor(ys);
int k = FastFloor(zs);
float t = (float)(i+j+k)*G3;
float X0 = i-t; // Unskew the cell origin back to (x,y,z) space
float Y0 = j-t;
float Z0 = k-t;
float x0 = x-X0; // The x,y,z distances from the cell origin
float y0 = y-Y0;
float z0 = z-Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
/* This code would benefit from a backport from the GLSL version! */
if(x0>=y0) {
if(y0>=z0)
{ i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order
else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order
else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order
}
else { // x0 0) ? ((int)x) : (((int)x) - 1);
}
private static int Mod(int x, int m)
{
int a = x % m;
return a < 0 ? a + m : a;
}
private static float grad( int hash, float x )
{
int h = hash & 15;
float grad = 1.0f + (h & 7); // Gradient value 1.0, 2.0, ..., 8.0
if ((h & 8) != 0) grad = -grad; // Set a random sign for the gradient
return ( grad * x ); // Multiply the gradient with the distance
}
private static float grad( int hash, float x, float y )
{
int h = hash & 7; // Convert low 3 bits of hash code
float u = h<4 ? x : y; // into 8 simple gradient directions,
float v = h<4 ? y : x; // and compute the dot product with (x,y).
return ((h&1) != 0 ? -u : u) + ((h&2) != 0 ? -2.0f*v : 2.0f*v);
}
private static float grad( int hash, float x, float y , float z ) {
int h = hash & 15; // Convert low 4 bits of hash code into 12 simple
float u = h<8 ? x : y; // gradient directions, and compute dot product.
float v = h<4 ? y : h==12||h==14 ? x : z; // Fix repeats at h = 12 to 15
return ((h&1) != 0 ? -u : u) + ((h&2) != 0 ? -v : v);
}
private static float grad( int hash, float x, float y, float z, float t ) {
int h = hash & 31; // Convert low 5 bits of hash code into 32 simple
float u = h<24 ? x : y; // gradient directions, and compute dot product.
float v = h<16 ? y : z;
float w = h<8 ? z : t;
return ((h&1) != 0 ? -u : u) + ((h&2) != 0 ? -v : v) + ((h&4) != 0 ? -w : w);
}
}
}