#ifndef UNIVERSAL_SHADOWS_INCLUDED #define UNIVERSAL_SHADOWS_INCLUDED #include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Common.hlsl" #include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Shadow/ShadowSamplingTent.hlsl" #include "Core.hlsl" #define MAX_SHADOW_CASCADES 4 #ifndef SHADOWS_SCREEN #if defined(_MAIN_LIGHT_SHADOWS) && defined(_MAIN_LIGHT_SHADOWS_CASCADE) && !defined(SHADER_API_GLES) #define SHADOWS_SCREEN 1 #else #define SHADOWS_SCREEN 0 #endif #endif SCREENSPACE_TEXTURE(_ScreenSpaceShadowmapTexture); SAMPLER(sampler_ScreenSpaceShadowmapTexture); TEXTURE2D_SHADOW(_MainLightShadowmapTexture); SAMPLER_CMP(sampler_MainLightShadowmapTexture); TEXTURE2D_SHADOW(_AdditionalLightsShadowmapTexture); SAMPLER_CMP(sampler_AdditionalLightsShadowmapTexture); // Last cascade is initialized with a no-op matrix. It always transforms // shadow coord to half3(0, 0, NEAR_PLANE). We use this trick to avoid // branching since ComputeCascadeIndex can return cascade index = MAX_SHADOW_CASCADES float4x4 _MainLightWorldToShadow[MAX_SHADOW_CASCADES + 1]; float4 _CascadeShadowSplitSpheres0; float4 _CascadeShadowSplitSpheres1; float4 _CascadeShadowSplitSpheres2; float4 _CascadeShadowSplitSpheres3; float4 _CascadeShadowSplitSphereRadii; half4 _MainLightShadowOffset0; half4 _MainLightShadowOffset1; half4 _MainLightShadowOffset2; half4 _MainLightShadowOffset3; half4 _MainLightShadowParams; // (x: shadowStrength, y: 1.0 if soft shadows, 0.0 otherwise) float4 _MainLightShadowmapSize; // (xy: 1/width and 1/height, zw: width and height) #if USE_STRUCTURED_BUFFER_FOR_LIGHT_DATA StructuredBuffer _AdditionalShadowsBuffer; StructuredBuffer _AdditionalShadowsIndices; #else float4x4 _AdditionalLightsWorldToShadow[MAX_VISIBLE_LIGHTS]; half4 _AdditionalShadowParams[MAX_VISIBLE_LIGHTS]; #endif half4 _AdditionalShadowOffset0; half4 _AdditionalShadowOffset1; half4 _AdditionalShadowOffset2; half4 _AdditionalShadowOffset3; float4 _AdditionalShadowmapSize; // (xy: 1/width and 1/height, zw: width and height) float4 _ShadowBias; // x: depth bias, y: normal bias #if UNITY_REVERSED_Z #define BEYOND_SHADOW_FAR(shadowCoord) shadowCoord.z <= UNITY_RAW_FAR_CLIP_VALUE #else #define BEYOND_SHADOW_FAR(shadowCoord) shadowCoord.z >= UNITY_RAW_FAR_CLIP_VALUE #endif struct ShadowSamplingData { half4 shadowOffset0; half4 shadowOffset1; half4 shadowOffset2; half4 shadowOffset3; float4 shadowmapSize; }; ShadowSamplingData GetMainLightShadowSamplingData() { ShadowSamplingData shadowSamplingData; shadowSamplingData.shadowOffset0 = _MainLightShadowOffset0; shadowSamplingData.shadowOffset1 = _MainLightShadowOffset1; shadowSamplingData.shadowOffset2 = _MainLightShadowOffset2; shadowSamplingData.shadowOffset3 = _MainLightShadowOffset3; shadowSamplingData.shadowmapSize = _MainLightShadowmapSize; return shadowSamplingData; } ShadowSamplingData GetAdditionalLightShadowSamplingData() { ShadowSamplingData shadowSamplingData; shadowSamplingData.shadowOffset0 = _AdditionalShadowOffset0; shadowSamplingData.shadowOffset1 = _AdditionalShadowOffset1; shadowSamplingData.shadowOffset2 = _AdditionalShadowOffset2; shadowSamplingData.shadowOffset3 = _AdditionalShadowOffset3; shadowSamplingData.shadowmapSize = _AdditionalShadowmapSize; return shadowSamplingData; } // ShadowParams // x: ShadowStrength // y: 1.0 if shadow is soft, 0.0 otherwise half4 GetMainLightShadowParams() { return _MainLightShadowParams; } // ShadowParams // x: ShadowStrength // y: 1.0 if shadow is soft, 0.0 otherwise half4 GetAdditionalLightShadowParams(int lightIndex) { #if USE_STRUCTURED_BUFFER_FOR_LIGHT_DATA return _AdditionalShadowsBuffer[lightIndex].shadowParams; #else return _AdditionalShadowParams[lightIndex]; #endif } half SampleScreenSpaceShadowmap(float4 shadowCoord) { shadowCoord.xy /= shadowCoord.w; // The stereo transform has to happen after the manual perspective divide shadowCoord.xy = UnityStereoTransformScreenSpaceTex(shadowCoord.xy); #if defined(UNITY_STEREO_INSTANCING_ENABLED) || defined(UNITY_STEREO_MULTIVIEW_ENABLED) half attenuation = SAMPLE_TEXTURE2D_ARRAY(_ScreenSpaceShadowmapTexture, sampler_ScreenSpaceShadowmapTexture, shadowCoord.xy, unity_StereoEyeIndex).x; #else half attenuation = SAMPLE_TEXTURE2D(_ScreenSpaceShadowmapTexture, sampler_ScreenSpaceShadowmapTexture, shadowCoord.xy).x; #endif return attenuation; } real SampleShadowmapFiltered(TEXTURE2D_SHADOW_PARAM(ShadowMap, sampler_ShadowMap), float4 shadowCoord, ShadowSamplingData samplingData) { real attenuation; #if defined(SHADER_API_MOBILE) || defined(SHADER_API_SWITCH) // 4-tap hardware comparison real4 attenuation4; attenuation4.x = SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, shadowCoord.xyz + samplingData.shadowOffset0.xyz); attenuation4.y = SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, shadowCoord.xyz + samplingData.shadowOffset1.xyz); attenuation4.z = SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, shadowCoord.xyz + samplingData.shadowOffset2.xyz); attenuation4.w = SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, shadowCoord.xyz + samplingData.shadowOffset3.xyz); attenuation = dot(attenuation4, 0.25); #else float fetchesWeights[9]; float2 fetchesUV[9]; SampleShadow_ComputeSamples_Tent_5x5(samplingData.shadowmapSize, shadowCoord.xy, fetchesWeights, fetchesUV); attenuation = fetchesWeights[0] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[0].xy, shadowCoord.z)); attenuation += fetchesWeights[1] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[1].xy, shadowCoord.z)); attenuation += fetchesWeights[2] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[2].xy, shadowCoord.z)); attenuation += fetchesWeights[3] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[3].xy, shadowCoord.z)); attenuation += fetchesWeights[4] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[4].xy, shadowCoord.z)); attenuation += fetchesWeights[5] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[5].xy, shadowCoord.z)); attenuation += fetchesWeights[6] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[6].xy, shadowCoord.z)); attenuation += fetchesWeights[7] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[7].xy, shadowCoord.z)); attenuation += fetchesWeights[8] * SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, float3(fetchesUV[8].xy, shadowCoord.z)); #endif return attenuation; } real SampleShadowmap(TEXTURE2D_SHADOW_PARAM(ShadowMap, sampler_ShadowMap), float4 shadowCoord, ShadowSamplingData samplingData, half4 shadowParams, bool isPerspectiveProjection = true) { // Compiler will optimize this branch away as long as isPerspectiveProjection is known at compile time if (isPerspectiveProjection) shadowCoord.xyz /= shadowCoord.w; real attenuation; real shadowStrength = shadowParams.x; // TODO: We could branch on if this light has soft shadows (shadowParams.y) to save perf on some platforms. #ifdef _SHADOWS_SOFT attenuation = SampleShadowmapFiltered(TEXTURE2D_SHADOW_ARGS(ShadowMap, sampler_ShadowMap), shadowCoord, samplingData); #else // 1-tap hardware comparison attenuation = SAMPLE_TEXTURE2D_SHADOW(ShadowMap, sampler_ShadowMap, shadowCoord.xyz); #endif attenuation = LerpWhiteTo(attenuation, shadowStrength); // Shadow coords that fall out of the light frustum volume must always return attenuation 1.0 // TODO: We could use branch here to save some perf on some platforms. return BEYOND_SHADOW_FAR(shadowCoord) ? 1.0 : attenuation; } half ComputeCascadeIndex(float3 positionWS) { float3 fromCenter0 = positionWS - _CascadeShadowSplitSpheres0.xyz; float3 fromCenter1 = positionWS - _CascadeShadowSplitSpheres1.xyz; float3 fromCenter2 = positionWS - _CascadeShadowSplitSpheres2.xyz; float3 fromCenter3 = positionWS - _CascadeShadowSplitSpheres3.xyz; float4 distances2 = float4(dot(fromCenter0, fromCenter0), dot(fromCenter1, fromCenter1), dot(fromCenter2, fromCenter2), dot(fromCenter3, fromCenter3)); half4 weights = half4(distances2 < _CascadeShadowSplitSphereRadii); weights.yzw = saturate(weights.yzw - weights.xyz); return 4 - dot(weights, half4(4, 3, 2, 1)); } float4 TransformWorldToShadowCoord(float3 positionWS) { #ifdef _MAIN_LIGHT_SHADOWS_CASCADE half cascadeIndex = ComputeCascadeIndex(positionWS); return mul(_MainLightWorldToShadow[cascadeIndex], float4(positionWS, 1.0)); #else return mul(_MainLightWorldToShadow[0], float4(positionWS, 1.0)); #endif } half MainLightRealtimeShadow(float4 shadowCoord) { #if !defined(_MAIN_LIGHT_SHADOWS) || defined(_RECEIVE_SHADOWS_OFF) return 1.0h; #endif #if SHADOWS_SCREEN return SampleScreenSpaceShadowmap(shadowCoord); #else ShadowSamplingData shadowSamplingData = GetMainLightShadowSamplingData(); half4 shadowParams = GetMainLightShadowParams(); return SampleShadowmap(TEXTURE2D_ARGS(_MainLightShadowmapTexture, sampler_MainLightShadowmapTexture), shadowCoord, shadowSamplingData, shadowParams, false); #endif } half AdditionalLightRealtimeShadow(int lightIndex, float3 positionWS) { #if !defined(_ADDITIONAL_LIGHT_SHADOWS) || defined(_RECEIVE_SHADOWS_OFF) return 1.0h; #endif ShadowSamplingData shadowSamplingData = GetAdditionalLightShadowSamplingData(); #if USE_STRUCTURED_BUFFER_FOR_LIGHT_DATA lightIndex = _AdditionalShadowsIndices[lightIndex]; // We have to branch here as otherwise we would sample buffer with lightIndex == -1. // However this should be ok for platforms that store light in SSBO. UNITY_BRANCH if (lightIndex < 0) return 1.0; float4 shadowCoord = mul(_AdditionalShadowsBuffer[lightIndex].worldToShadowMatrix, float4(positionWS, 1.0)); #else float4 shadowCoord = mul(_AdditionalLightsWorldToShadow[lightIndex], float4(positionWS, 1.0)); #endif half4 shadowParams = GetAdditionalLightShadowParams(lightIndex); return SampleShadowmap(TEXTURE2D_ARGS(_AdditionalLightsShadowmapTexture, sampler_AdditionalLightsShadowmapTexture), shadowCoord, shadowSamplingData, shadowParams, true); } float4 GetShadowCoord(VertexPositionInputs vertexInput) { #if SHADOWS_SCREEN return ComputeScreenPos(vertexInput.positionCS); #else return TransformWorldToShadowCoord(vertexInput.positionWS); #endif } float3 ApplyShadowBias(float3 positionWS, float3 normalWS, float3 lightDirection) { float invNdotL = 1.0 - saturate(dot(lightDirection, normalWS)); float scale = invNdotL * _ShadowBias.y; // normal bias is negative since we want to apply an inset normal offset positionWS = lightDirection * _ShadowBias.xxx + positionWS; positionWS = normalWS * scale.xxx + positionWS; return positionWS; } /////////////////////////////////////////////////////////////////////////////// // Deprecated / /////////////////////////////////////////////////////////////////////////////// // Renamed -> _MainLightShadowParams #define _MainLightShadowData _MainLightShadowParams // Deprecated: Use GetMainLightShadowParams instead. half GetMainLightShadowStrength() { return _MainLightShadowData.x; } // Deprecated: Use GetAdditionalLightShadowParams instead. half GetAdditionalLightShadowStrenth(int lightIndex) { #if USE_STRUCTURED_BUFFER_FOR_LIGHT_DATA return _AdditionalShadowsBuffer[lightIndex].shadowParams.x; #else return _AdditionalShadowParams[lightIndex].x; #endif } // Deprecated: Use SampleShadowmap that takes shadowParams instead of strength. real SampleShadowmap(float4 shadowCoord, TEXTURE2D_SHADOW_PARAM(ShadowMap, sampler_ShadowMap), ShadowSamplingData samplingData, half shadowStrength, bool isPerspectiveProjection = true) { half4 shadowParams = half4(shadowStrength, 1.0, 0.0, 0.0); return SampleShadowmap(TEXTURE2D_SHADOW_ARGS(ShadowMap, sampler_ShadowMap), shadowCoord, samplingData, shadowParams, isPerspectiveProjection); } #endif