using UnityEngine; using System.Collections.Generic; using Unity.Collections; using Unity.Jobs; using Unity.Burst; using Unity.Mathematics; using WaterSystem.Data; namespace WaterSystem { /// /// C# Jobs system version of the Gerstner waves implimentation /// public static class GerstnerWavesJobs { //General variables public static bool init; public static bool firstFrame = true; public static bool processing = false; static int _waveCount; static NativeArray waveData; // Wave data from the water system //Details for Buoyant Objects static NativeArray positions; static int positionCount = 0; static NativeArray wavePos; static NativeArray waveNormal; static JobHandle waterHeightHandle; static Dictionary registry = new Dictionary(); public static void Init() { //Wave data _waveCount = Water.Instance._waves.Length; waveData = new NativeArray(_waveCount, Allocator.Persistent); for (var i = 0; i < waveData.Length; i++) { waveData[i] = Water.Instance._waves[i]; } positions = new NativeArray(4096, Allocator.Persistent); wavePos = new NativeArray(4096, Allocator.Persistent); waveNormal = new NativeArray(4096, Allocator.Persistent); init = true; } public static void Cleanup() { Debug.LogWarning("Cleaning up GerstnerWaves"); waterHeightHandle.Complete(); //Cleanup native arrays waveData.Dispose(); positions.Dispose(); wavePos.Dispose(); waveNormal.Dispose(); } public static void UpdateSamplePoints(float3[] samplePoints, int guid) { CompleteJobs(); int2 offsets; if (registry.TryGetValue(guid, out offsets)) { for (var i = offsets.x; i < offsets.y; i++) positions[i] = samplePoints[i - offsets.x]; } else { if (positionCount + samplePoints.Length < positions.Length) { offsets = new int2(positionCount, positionCount + samplePoints.Length); //Debug.Log("Adding Object:" + guid + " to the registry at offset:" + offsets + ""); registry.Add(guid, offsets); positionCount += samplePoints.Length; } } } public static void GetData(int guid, ref float3[] outPos, ref float3[] outNorm) { var offsets = new int2(0, 0); if (registry.TryGetValue(guid, out offsets)) { wavePos.Slice(offsets.x, offsets.y - offsets.x).CopyTo(outPos); if(outNorm != null) waveNormal.Slice(offsets.x, offsets.y - offsets.x).CopyTo(outNorm); } } // Height jobs for the next frame public static void UpdateHeights() { if (!processing) { processing = true; // Buoyant Object Job var waterHeight = new GerstnerWavesJobs.HeightJob() { waveData = waveData, position = positions, offsetLength = new int2(0, positions.Length), time = Time.time, outPosition = wavePos, outNormal = waveNormal }; waterHeightHandle = waterHeight.Schedule(positionCount, 32); JobHandle.ScheduleBatchedJobs(); firstFrame = false; } } public static void CompleteJobs() { if (!firstFrame && processing) { waterHeightHandle.Complete(); processing = false; } } // Gerstner Height C# Job [BurstCompile] public struct HeightJob : IJobParallelFor { [ReadOnly] public NativeArray waveData; // wave data stroed in vec4's like the shader version but packed into one [ReadOnly] public NativeArray position; [WriteOnly] public NativeArray outPosition; [WriteOnly] public NativeArray outNormal; [ReadOnly] public float time; [ReadOnly] public int2 offsetLength; // The code actually running on the job public void Execute(int i) { if (i >= offsetLength.x && i < offsetLength.y - offsetLength.x) { var waveCountMulti = 1f / waveData.Length; float3 wavePos = new float3(0f, 0f, 0f); float3 waveNorm = new float3(0f, 0f, 0f); for (var wave = 0; wave < waveData.Length; wave++) // for each wave { // Wave data vars var pos = position[i].xz; var amplitude = waveData[wave].amplitude; var direction = waveData[wave].direction; var wavelength = waveData[wave].wavelength; var omniPos = waveData[wave].origin; ////////////////////////////////wave value calculations////////////////////////// var w = 6.28318f / wavelength; // 2pi over wavelength(hardcoded) var wSpeed = math.sqrt(9.8f * w); // frequency of the wave based off wavelength var peak = 0.8f; // peak value, 1 is the sharpest peaks var qi = peak / (amplitude * w * waveData.Length); var windDir = new float2(0f, 0f); var dir = 0f; direction = math.radians(direction); // convert the incoming degrees to radians var windDirInput = new float2(math.sin(direction), math.cos(direction)) * (1 - waveData[wave].onmiDir); // calculate wind direction - TODO - currently radians var windOmniInput = (pos - omniPos) * waveData[wave].onmiDir; windDir += windDirInput; windDir += windOmniInput; windDir = math.normalize(windDir); dir = math.dot(windDir, pos - (omniPos * waveData[wave].onmiDir)); // calculate a gradient along the wind direction ////////////////////////////position output calculations///////////////////////// var calc = dir * w + -time * wSpeed; // the wave calculation var cosCalc = math.cos(calc); // cosine version(used for horizontal undulation) var sinCalc = math.sin(calc); // sin version(used for vertical undulation) // calculate the offsets for the current point wavePos.x += qi * amplitude * windDir.x * cosCalc; wavePos.z += qi * amplitude * windDir.y * cosCalc; wavePos.y += ((sinCalc * amplitude)) * waveCountMulti; // the height is divided by the number of waves ////////////////////////////normal output calculations///////////////////////// float wa = w * amplitude; // normal vector float3 norm = new float3(-(windDir.xy * wa * cosCalc), 1 - (qi * wa * sinCalc)); waveNorm += (norm * waveCountMulti) * amplitude; } outPosition[i] = wavePos; outNormal[i] = math.normalize(waveNorm.xzy); } } } } }