#ifndef UNIVERSAL_LIGHTING_INCLUDED #define UNIVERSAL_LIGHTING_INCLUDED #include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Common.hlsl" #include "Packages/com.unity.render-pipelines.core/ShaderLibrary/EntityLighting.hlsl" #include "Packages/com.unity.render-pipelines.core/ShaderLibrary/ImageBasedLighting.hlsl" #include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Core.hlsl" #include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Shadows.hlsl" // If lightmap is not defined than we evaluate GI (ambient + probes) from SH // We might do it fully or partially in vertex to save shader ALU #if !defined(LIGHTMAP_ON) // TODO: Controls things like these by exposing SHADER_QUALITY levels (low, medium, high) #if defined(SHADER_API_GLES) || !defined(_NORMALMAP) // Evaluates SH fully in vertex #define EVALUATE_SH_VERTEX #elif !SHADER_HINT_NICE_QUALITY // Evaluates L2 SH in vertex and L0L1 in pixel #define EVALUATE_SH_MIXED #endif // Otherwise evaluate SH fully per-pixel #endif #ifdef LIGHTMAP_ON #define DECLARE_LIGHTMAP_OR_SH(lmName, shName, index) float2 lmName : TEXCOORD##index #define OUTPUT_LIGHTMAP_UV(lightmapUV, lightmapScaleOffset, OUT) OUT.xy = lightmapUV.xy * lightmapScaleOffset.xy + lightmapScaleOffset.zw; #define OUTPUT_SH(normalWS, OUT) #else #define DECLARE_LIGHTMAP_OR_SH(lmName, shName, index) half3 shName : TEXCOORD##index #define OUTPUT_LIGHTMAP_UV(lightmapUV, lightmapScaleOffset, OUT) #define OUTPUT_SH(normalWS, OUT) OUT.xyz = SampleSHVertex(normalWS) #endif /////////////////////////////////////////////////////////////////////////////// // Light Helpers // /////////////////////////////////////////////////////////////////////////////// // Abstraction over Light shading data. struct Light { half3 direction; half3 color; half distanceAttenuation; half shadowAttenuation; }; /////////////////////////////////////////////////////////////////////////////// // Attenuation Functions / /////////////////////////////////////////////////////////////////////////////// // Matches Unity Vanila attenuation // Attenuation smoothly decreases to light range. float DistanceAttenuation(float distanceSqr, half2 distanceAttenuation) { // We use a shared distance attenuation for additional directional and puctual lights // for directional lights attenuation will be 1 float lightAtten = rcp(distanceSqr); #if SHADER_HINT_NICE_QUALITY // Use the smoothing factor also used in the Unity lightmapper. half factor = distanceSqr * distanceAttenuation.x; half smoothFactor = saturate(1.0h - factor * factor); smoothFactor = smoothFactor * smoothFactor; #else // We need to smoothly fade attenuation to light range. We start fading linearly at 80% of light range // Therefore: // fadeDistance = (0.8 * 0.8 * lightRangeSq) // smoothFactor = (lightRangeSqr - distanceSqr) / (lightRangeSqr - fadeDistance) // We can rewrite that to fit a MAD by doing // distanceSqr * (1.0 / (fadeDistanceSqr - lightRangeSqr)) + (-lightRangeSqr / (fadeDistanceSqr - lightRangeSqr) // distanceSqr * distanceAttenuation.y + distanceAttenuation.z half smoothFactor = saturate(distanceSqr * distanceAttenuation.x + distanceAttenuation.y); #endif return lightAtten * smoothFactor; } half AngleAttenuation(half3 spotDirection, half3 lightDirection, half2 spotAttenuation) { // Spot Attenuation with a linear falloff can be defined as // (SdotL - cosOuterAngle) / (cosInnerAngle - cosOuterAngle) // This can be rewritten as // invAngleRange = 1.0 / (cosInnerAngle - cosOuterAngle) // SdotL * invAngleRange + (-cosOuterAngle * invAngleRange) // SdotL * spotAttenuation.x + spotAttenuation.y // If we precompute the terms in a MAD instruction half SdotL = dot(spotDirection, lightDirection); half atten = saturate(SdotL * spotAttenuation.x + spotAttenuation.y); return atten * atten; } /////////////////////////////////////////////////////////////////////////////// // Light Abstraction // /////////////////////////////////////////////////////////////////////////////// Light GetMainLight() { Light light; light.direction = _MainLightPosition.xyz; // unity_LightData.z is 1 when not culled by the culling mask, otherwise 0. light.distanceAttenuation = unity_LightData.z; #if defined(LIGHTMAP_ON) || defined(_MIXED_LIGHTING_SUBTRACTIVE) // unity_ProbesOcclusion.x is the mixed light probe occlusion data light.distanceAttenuation *= unity_ProbesOcclusion.x; #endif light.shadowAttenuation = 1.0; light.color = _MainLightColor.rgb; return light; } Light GetMainLight(float4 shadowCoord) { Light light = GetMainLight(); light.shadowAttenuation = MainLightRealtimeShadow(shadowCoord); return light; } // Fills a light struct given a perObjectLightIndex Light GetAdditionalPerObjectLight(int perObjectLightIndex, float3 positionWS) { // Abstraction over Light input constants #if USE_STRUCTURED_BUFFER_FOR_LIGHT_DATA float3 lightPositionWS = _AdditionalLightsBuffer[perObjectLightIndex].position.xyz; half3 color = _AdditionalLightsBuffer[perObjectLightIndex].color.rgb; half4 distanceAndSpotAttenuation = _AdditionalLightsBuffer[perObjectLightIndex].attenuation; half4 spotDirection = _AdditionalLightsBuffer[perObjectLightIndex].spotDirection; half4 lightOcclusionProbeInfo = _AdditionalLightsBuffer[perObjectLightIndex].occlusionProbeChannels; #else float3 lightPositionWS = _AdditionalLightsPosition[perObjectLightIndex].xyz; half3 color = _AdditionalLightsColor[perObjectLightIndex].rgb; half4 distanceAndSpotAttenuation = _AdditionalLightsAttenuation[perObjectLightIndex]; half4 spotDirection = _AdditionalLightsSpotDir[perObjectLightIndex]; half4 lightOcclusionProbeInfo = _AdditionalLightsOcclusionProbes[perObjectLightIndex]; #endif float3 lightVector = lightPositionWS - positionWS; float distanceSqr = max(dot(lightVector, lightVector), HALF_MIN); half3 lightDirection = half3(lightVector * rsqrt(distanceSqr)); half attenuation = DistanceAttenuation(distanceSqr, distanceAndSpotAttenuation.xy) * AngleAttenuation(spotDirection.xyz, lightDirection, distanceAndSpotAttenuation.zw); Light light; light.direction = lightDirection; light.distanceAttenuation = attenuation; light.shadowAttenuation = AdditionalLightRealtimeShadow(perObjectLightIndex, positionWS); light.color = color; // In case we're using light probes, we can sample the attenuation from the `unity_ProbesOcclusion` #if defined(LIGHTMAP_ON) || defined(_MIXED_LIGHTING_SUBTRACTIVE) // First find the probe channel from the light. // Then sample `unity_ProbesOcclusion` for the baked occlusion. // If the light is not baked, the channel is -1, and we need to apply no occlusion. // probeChannel is the index in 'unity_ProbesOcclusion' that holds the proper occlusion value. int probeChannel = lightOcclusionProbeInfo.x; // lightProbeContribution is set to 0 if we are indeed using a probe, otherwise set to 1. half lightProbeContribution = lightOcclusionProbeInfo.y; half probeOcclusionValue = unity_ProbesOcclusion[probeChannel]; light.distanceAttenuation *= max(probeOcclusionValue, lightProbeContribution); #endif return light; } uint GetPerObjectLightIndexOffset() { #if USE_STRUCTURED_BUFFER_FOR_LIGHT_DATA return unity_LightData.x; #else return 0; #endif } // Returns a per-object index given a loop index. // This abstract the underlying data implementation for storing lights/light indices int GetPerObjectLightIndex(uint index) { ///////////////////////////////////////////////////////////////////////////////////////////// // Structured Buffer Path / // / // Lights and light indices are stored in StructuredBuffer. We can just index them. / // Currently all non-mobile platforms take this path :( / // There are limitation in mobile GPUs to use SSBO (performance / no vertex shader support) / ///////////////////////////////////////////////////////////////////////////////////////////// #if USE_STRUCTURED_BUFFER_FOR_LIGHT_DATA uint offset = unity_LightData.x; return _AdditionalLightsIndices[offset + index]; ///////////////////////////////////////////////////////////////////////////////////////////// // UBO path / // / // We store 8 light indices in float4 unity_LightIndices[2]; / // Due to memory alignment unity doesn't support int[] or float[] / // Even trying to reinterpret cast the unity_LightIndices to float[] won't work / // it will cast to float4[] and create extra register pressure. :( / ///////////////////////////////////////////////////////////////////////////////////////////// #elif !defined(SHADER_API_GLES) // since index is uint shader compiler will implement // div & mod as bitfield ops (shift and mask). // TODO: Can we index a float4? Currently compiler is // replacing unity_LightIndicesX[i] with a dp4 with identity matrix. // u_xlat16_40 = dot(unity_LightIndices[int(u_xlatu13)], ImmCB_0_0_0[u_xlati1]); // This increases both arithmetic and register pressure. return unity_LightIndices[index / 4][index % 4]; #else // Fallback to GLES2. No bitfield magic here :(. // We limit to 4 indices per object and only sample unity_4LightIndices0. // Conditional moves are branch free even on mali-400 // small arithmetic cost but no extra register pressure from ImmCB_0_0_0 matrix. half2 lightIndex2 = (index < 2.0h) ? unity_LightIndices[0].xy : unity_LightIndices[0].zw; half i_rem = (index < 2.0h) ? index : index - 2.0h; return (i_rem < 1.0h) ? lightIndex2.x : lightIndex2.y; #endif } // Fills a light struct given a loop i index. This will convert the i // index to a perObjectLightIndex Light GetAdditionalLight(uint i, float3 positionWS) { int perObjectLightIndex = GetPerObjectLightIndex(i); return GetAdditionalPerObjectLight(perObjectLightIndex, positionWS); } int GetAdditionalLightsCount() { // TODO: we need to expose in SRP api an ability for the pipeline cap the amount of lights // in the culling. This way we could do the loop branch with an uniform // This would be helpful to support baking exceeding lights in SH as well return min(_AdditionalLightsCount.x, unity_LightData.y); } /////////////////////////////////////////////////////////////////////////////// // BRDF Functions // /////////////////////////////////////////////////////////////////////////////// #define kDieletricSpec half4(0.04, 0.04, 0.04, 1.0 - 0.04) // standard dielectric reflectivity coef at incident angle (= 4%) struct BRDFData { half3 diffuse; half3 specular; half perceptualRoughness; half roughness; half roughness2; half grazingTerm; // We save some light invariant BRDF terms so we don't have to recompute // them in the light loop. Take a look at DirectBRDF function for detailed explaination. half normalizationTerm; // roughness * 4.0 + 2.0 half roughness2MinusOne; // roughness² - 1.0 }; half ReflectivitySpecular(half3 specular) { #if defined(SHADER_API_GLES) return specular.r; // Red channel - because most metals are either monocrhome or with redish/yellowish tint #else return max(max(specular.r, specular.g), specular.b); #endif } half OneMinusReflectivityMetallic(half metallic) { // We'll need oneMinusReflectivity, so // 1-reflectivity = 1-lerp(dielectricSpec, 1, metallic) = lerp(1-dielectricSpec, 0, metallic) // store (1-dielectricSpec) in kDieletricSpec.a, then // 1-reflectivity = lerp(alpha, 0, metallic) = alpha + metallic*(0 - alpha) = // = alpha - metallic * alpha half oneMinusDielectricSpec = kDieletricSpec.a; return oneMinusDielectricSpec - metallic * oneMinusDielectricSpec; } inline void InitializeBRDFData(half3 albedo, half metallic, half3 specular, half smoothness, half alpha, out BRDFData outBRDFData) { #ifdef _SPECULAR_SETUP half reflectivity = ReflectivitySpecular(specular); half oneMinusReflectivity = 1.0 - reflectivity; outBRDFData.diffuse = albedo * (half3(1.0h, 1.0h, 1.0h) - specular); outBRDFData.specular = specular; #else half oneMinusReflectivity = OneMinusReflectivityMetallic(metallic); half reflectivity = 1.0 - oneMinusReflectivity; outBRDFData.diffuse = albedo * oneMinusReflectivity; outBRDFData.specular = lerp(kDieletricSpec.rgb, albedo, metallic); #endif outBRDFData.grazingTerm = saturate(smoothness + reflectivity); outBRDFData.perceptualRoughness = PerceptualSmoothnessToPerceptualRoughness(smoothness); outBRDFData.roughness = PerceptualRoughnessToRoughness(outBRDFData.perceptualRoughness); outBRDFData.roughness2 = outBRDFData.roughness * outBRDFData.roughness; outBRDFData.normalizationTerm = outBRDFData.roughness * 4.0h + 2.0h; outBRDFData.roughness2MinusOne = outBRDFData.roughness2 - 1.0h; #ifdef _ALPHAPREMULTIPLY_ON outBRDFData.diffuse *= alpha; alpha = alpha * oneMinusReflectivity + reflectivity; #endif } half3 EnvironmentBRDF(BRDFData brdfData, half3 indirectDiffuse, half3 indirectSpecular, half fresnelTerm) { half3 c = indirectDiffuse * brdfData.diffuse; float surfaceReduction = 1.0 / (brdfData.roughness2 + 1.0); c += surfaceReduction * indirectSpecular * lerp(brdfData.specular, brdfData.grazingTerm, fresnelTerm); return c; } // Based on Minimalist CookTorrance BRDF // Implementation is slightly different from original derivation: http://www.thetenthplanet.de/archives/255 // // * NDF [Modified] GGX // * Modified Kelemen and Szirmay-​Kalos for Visibility term // * Fresnel approximated with 1/LdotH half3 DirectBDRF(BRDFData brdfData, half3 normalWS, half3 lightDirectionWS, half3 viewDirectionWS) { #ifndef _SPECULARHIGHLIGHTS_OFF float3 halfDir = SafeNormalize(float3(lightDirectionWS) + float3(viewDirectionWS)); float NoH = saturate(dot(normalWS, halfDir)); half LoH = saturate(dot(lightDirectionWS, halfDir)); // GGX Distribution multiplied by combined approximation of Visibility and Fresnel // BRDFspec = (D * V * F) / 4.0 // D = roughness² / ( NoH² * (roughness² - 1) + 1 )² // V * F = 1.0 / ( LoH² * (roughness + 0.5) ) // See "Optimizing PBR for Mobile" from Siggraph 2015 moving mobile graphics course // https://community.arm.com/events/1155 // Final BRDFspec = roughness² / ( NoH² * (roughness² - 1) + 1 )² * (LoH² * (roughness + 0.5) * 4.0) // We further optimize a few light invariant terms // brdfData.normalizationTerm = (roughness + 0.5) * 4.0 rewritten as roughness * 4.0 + 2.0 to a fit a MAD. float d = NoH * NoH * brdfData.roughness2MinusOne + 1.00001f; half LoH2 = LoH * LoH; half specularTerm = brdfData.roughness2 / ((d * d) * max(0.1h, LoH2) * brdfData.normalizationTerm); // On platforms where half actually means something, the denominator has a risk of overflow // clamp below was added specifically to "fix" that, but dx compiler (we convert bytecode to metal/gles) // sees that specularTerm have only non-negative terms, so it skips max(0,..) in clamp (leaving only min(100,...)) #if defined (SHADER_API_MOBILE) || defined (SHADER_API_SWITCH) specularTerm = specularTerm - HALF_MIN; specularTerm = clamp(specularTerm, 0.0, 100.0); // Prevent FP16 overflow on mobiles #endif half3 color = specularTerm * brdfData.specular + brdfData.diffuse; return color; #else return brdfData.diffuse; #endif } /////////////////////////////////////////////////////////////////////////////// // Global Illumination // /////////////////////////////////////////////////////////////////////////////// // Samples SH L0, L1 and L2 terms half3 SampleSH(half3 normalWS) { // LPPV is not supported in Ligthweight Pipeline real4 SHCoefficients[7]; SHCoefficients[0] = unity_SHAr; SHCoefficients[1] = unity_SHAg; SHCoefficients[2] = unity_SHAb; SHCoefficients[3] = unity_SHBr; SHCoefficients[4] = unity_SHBg; SHCoefficients[5] = unity_SHBb; SHCoefficients[6] = unity_SHC; return max(half3(0, 0, 0), SampleSH9(SHCoefficients, normalWS)); } // SH Vertex Evaluation. Depending on target SH sampling might be // done completely per vertex or mixed with L2 term per vertex and L0, L1 // per pixel. See SampleSHPixel half3 SampleSHVertex(half3 normalWS) { #if defined(EVALUATE_SH_VERTEX) return max(half3(0, 0, 0), SampleSH(normalWS)); #elif defined(EVALUATE_SH_MIXED) // no max since this is only L2 contribution return SHEvalLinearL2(normalWS, unity_SHBr, unity_SHBg, unity_SHBb, unity_SHC); #endif // Fully per-pixel. Nothing to compute. return half3(0.0, 0.0, 0.0); } // SH Pixel Evaluation. Depending on target SH sampling might be done // mixed or fully in pixel. See SampleSHVertex half3 SampleSHPixel(half3 L2Term, half3 normalWS) { #if defined(EVALUATE_SH_VERTEX) return L2Term; #elif defined(EVALUATE_SH_MIXED) half3 L0L1Term = SHEvalLinearL0L1(normalWS, unity_SHAr, unity_SHAg, unity_SHAb); return max(half3(0, 0, 0), L2Term + L0L1Term); #endif // Default: Evaluate SH fully per-pixel return SampleSH(normalWS); } // Sample baked lightmap. Non-Direction and Directional if available. // Realtime GI is not supported. half3 SampleLightmap(float2 lightmapUV, half3 normalWS) { #ifdef UNITY_LIGHTMAP_FULL_HDR bool encodedLightmap = false; #else bool encodedLightmap = true; #endif half4 decodeInstructions = half4(LIGHTMAP_HDR_MULTIPLIER, LIGHTMAP_HDR_EXPONENT, 0.0h, 0.0h); // The shader library sample lightmap functions transform the lightmap uv coords to apply bias and scale. // However, universal pipeline already transformed those coords in vertex. We pass half4(1, 1, 0, 0) and // the compiler will optimize the transform away. half4 transformCoords = half4(1, 1, 0, 0); #ifdef DIRLIGHTMAP_COMBINED return SampleDirectionalLightmap(TEXTURE2D_ARGS(unity_Lightmap, samplerunity_Lightmap), TEXTURE2D_ARGS(unity_LightmapInd, samplerunity_Lightmap), lightmapUV, transformCoords, normalWS, encodedLightmap, decodeInstructions); #elif defined(LIGHTMAP_ON) return SampleSingleLightmap(TEXTURE2D_ARGS(unity_Lightmap, samplerunity_Lightmap), lightmapUV, transformCoords, encodedLightmap, decodeInstructions); #else return half3(0.0, 0.0, 0.0); #endif } // We either sample GI from baked lightmap or from probes. // If lightmap: sampleData.xy = lightmapUV // If probe: sampleData.xyz = L2 SH terms #ifdef LIGHTMAP_ON #define SAMPLE_GI(lmName, shName, normalWSName) SampleLightmap(lmName, normalWSName) #else #define SAMPLE_GI(lmName, shName, normalWSName) SampleSHPixel(shName, normalWSName) #endif half3 GlossyEnvironmentReflection(half3 reflectVector, half perceptualRoughness, half occlusion) { #if !defined(_ENVIRONMENTREFLECTIONS_OFF) half mip = PerceptualRoughnessToMipmapLevel(perceptualRoughness); half4 encodedIrradiance = SAMPLE_TEXTURECUBE_LOD(unity_SpecCube0, samplerunity_SpecCube0, reflectVector, mip); #if !defined(UNITY_USE_NATIVE_HDR) half3 irradiance = DecodeHDREnvironment(encodedIrradiance, unity_SpecCube0_HDR); #else half3 irradiance = encodedIrradiance.rbg; #endif return irradiance * occlusion; #endif // GLOSSY_REFLECTIONS return _GlossyEnvironmentColor.rgb * occlusion; } half3 SubtractDirectMainLightFromLightmap(Light mainLight, half3 normalWS, half3 bakedGI) { // Let's try to make realtime shadows work on a surface, which already contains // baked lighting and shadowing from the main sun light. // Summary: // 1) Calculate possible value in the shadow by subtracting estimated light contribution from the places occluded by realtime shadow: // a) preserves other baked lights and light bounces // b) eliminates shadows on the geometry facing away from the light // 2) Clamp against user defined ShadowColor. // 3) Pick original lightmap value, if it is the darkest one. // 1) Gives good estimate of illumination as if light would've been shadowed during the bake. // We only subtract the main direction light. This is accounted in the contribution term below. half shadowStrength = GetMainLightShadowStrength(); half contributionTerm = saturate(dot(mainLight.direction, normalWS)); half3 lambert = mainLight.color * contributionTerm; half3 estimatedLightContributionMaskedByInverseOfShadow = lambert * (1.0 - mainLight.shadowAttenuation); half3 subtractedLightmap = bakedGI - estimatedLightContributionMaskedByInverseOfShadow; // 2) Allows user to define overall ambient of the scene and control situation when realtime shadow becomes too dark. half3 realtimeShadow = max(subtractedLightmap, _SubtractiveShadowColor.xyz); realtimeShadow = lerp(bakedGI, realtimeShadow, shadowStrength); // 3) Pick darkest color return min(bakedGI, realtimeShadow); } half3 GlobalIllumination(BRDFData brdfData, half3 bakedGI, half occlusion, half3 normalWS, half3 viewDirectionWS) { half3 reflectVector = reflect(-viewDirectionWS, normalWS); half fresnelTerm = Pow4(1.0 - saturate(dot(normalWS, viewDirectionWS))); half3 indirectDiffuse = bakedGI * occlusion; half3 indirectSpecular = GlossyEnvironmentReflection(reflectVector, brdfData.perceptualRoughness, occlusion); return EnvironmentBRDF(brdfData, indirectDiffuse, indirectSpecular, fresnelTerm); } void MixRealtimeAndBakedGI(inout Light light, half3 normalWS, inout half3 bakedGI, half4 shadowMask) { #if defined(_MIXED_LIGHTING_SUBTRACTIVE) && defined(LIGHTMAP_ON) bakedGI = SubtractDirectMainLightFromLightmap(light, normalWS, bakedGI); #endif } /////////////////////////////////////////////////////////////////////////////// // Lighting Functions // /////////////////////////////////////////////////////////////////////////////// half3 LightingLambert(half3 lightColor, half3 lightDir, half3 normal) { half NdotL = saturate(dot(normal, lightDir)); return lightColor * NdotL; } half3 LightingSpecular(half3 lightColor, half3 lightDir, half3 normal, half3 viewDir, half4 specular, half smoothness) { float3 halfVec = SafeNormalize(float3(lightDir) + float3(viewDir)); half NdotH = saturate(dot(normal, halfVec)); half modifier = pow(NdotH, smoothness); half3 specularReflection = specular.rgb * modifier; return lightColor * specularReflection; } half3 LightingPhysicallyBased(BRDFData brdfData, half3 lightColor, half3 lightDirectionWS, half lightAttenuation, half3 normalWS, half3 viewDirectionWS) { half NdotL = saturate(dot(normalWS, lightDirectionWS)); half3 radiance = lightColor * (lightAttenuation * NdotL); return DirectBDRF(brdfData, normalWS, lightDirectionWS, viewDirectionWS) * radiance; } half3 LightingPhysicallyBased(BRDFData brdfData, Light light, half3 normalWS, half3 viewDirectionWS) { return LightingPhysicallyBased(brdfData, light.color, light.direction, light.distanceAttenuation * light.shadowAttenuation, normalWS, viewDirectionWS); } half3 VertexLighting(float3 positionWS, half3 normalWS) { half3 vertexLightColor = half3(0.0, 0.0, 0.0); #ifdef _ADDITIONAL_LIGHTS_VERTEX uint lightsCount = GetAdditionalLightsCount(); for (uint lightIndex = 0u; lightIndex < lightsCount; ++lightIndex) { Light light = GetAdditionalLight(lightIndex, positionWS); half3 lightColor = light.color * light.distanceAttenuation; vertexLightColor += LightingLambert(lightColor, light.direction, normalWS); } #endif return vertexLightColor; } /////////////////////////////////////////////////////////////////////////////// // Fragment Functions // // Used by ShaderGraph and others builtin renderers // /////////////////////////////////////////////////////////////////////////////// half4 UniversalFragmentPBR(InputData inputData, half3 albedo, half metallic, half3 specular, half smoothness, half occlusion, half3 emission, half alpha) { BRDFData brdfData; InitializeBRDFData(albedo, metallic, specular, smoothness, alpha, brdfData); Light mainLight = GetMainLight(inputData.shadowCoord); MixRealtimeAndBakedGI(mainLight, inputData.normalWS, inputData.bakedGI, half4(0, 0, 0, 0)); half3 color = GlobalIllumination(brdfData, inputData.bakedGI, occlusion, inputData.normalWS, inputData.viewDirectionWS); color += LightingPhysicallyBased(brdfData, mainLight, inputData.normalWS, inputData.viewDirectionWS); #ifdef _ADDITIONAL_LIGHTS uint pixelLightCount = GetAdditionalLightsCount(); for (uint lightIndex = 0u; lightIndex < pixelLightCount; ++lightIndex) { Light light = GetAdditionalLight(lightIndex, inputData.positionWS); color += LightingPhysicallyBased(brdfData, light, inputData.normalWS, inputData.viewDirectionWS); } #endif #ifdef _ADDITIONAL_LIGHTS_VERTEX color += inputData.vertexLighting * brdfData.diffuse; #endif color += emission; return half4(color, alpha); } half4 UniversalFragmentBlinnPhong(InputData inputData, half3 diffuse, half4 specularGloss, half smoothness, half3 emission, half alpha) { Light mainLight = GetMainLight(inputData.shadowCoord); MixRealtimeAndBakedGI(mainLight, inputData.normalWS, inputData.bakedGI, half4(0, 0, 0, 0)); half3 attenuatedLightColor = mainLight.color * (mainLight.distanceAttenuation * mainLight.shadowAttenuation); half3 diffuseColor = inputData.bakedGI + LightingLambert(attenuatedLightColor, mainLight.direction, inputData.normalWS); half3 specularColor = LightingSpecular(attenuatedLightColor, mainLight.direction, inputData.normalWS, inputData.viewDirectionWS, specularGloss, smoothness); #ifdef _ADDITIONAL_LIGHTS uint pixelLightCount = GetAdditionalLightsCount(); for (uint lightIndex = 0u; lightIndex < pixelLightCount; ++lightIndex) { Light light = GetAdditionalLight(lightIndex, inputData.positionWS); half3 attenuatedLightColor = light.color * (light.distanceAttenuation * light.shadowAttenuation); diffuseColor += LightingLambert(attenuatedLightColor, light.direction, inputData.normalWS); specularColor += LightingSpecular(attenuatedLightColor, light.direction, inputData.normalWS, inputData.viewDirectionWS, specularGloss, smoothness); } #endif #ifdef _ADDITIONAL_LIGHTS_VERTEX diffuseColor += inputData.vertexLighting; #endif half3 finalColor = diffuseColor * diffuse + emission; #if defined(_SPECGLOSSMAP) || defined(_SPECULAR_COLOR) finalColor += specularColor; #endif return half4(finalColor, alpha); } //LWRP -> Universal Backwards Compatibility half4 LightweightFragmentPBR(InputData inputData, half3 albedo, half metallic, half3 specular, half smoothness, half occlusion, half3 emission, half alpha) { return UniversalFragmentPBR(inputData, albedo, metallic, specular, smoothness, occlusion, emission, alpha); } half4 LightweightFragmentBlinnPhong(InputData inputData, half3 diffuse, half4 specularGloss, half smoothness, half3 emission, half alpha) { return UniversalFragmentBlinnPhong(inputData, diffuse, specularGloss, smoothness, emission, alpha); } #endif