/*
** SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
** Copyright (C) 2011 Silicon Graphics, Inc.
** All Rights Reserved.
**
** Permission is hereby granted, free of charge, to any person obtaining a copy
** of this software and associated documentation files (the "Software"), to deal
** in the Software without restriction, including without limitation the rights
** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
** of the Software, and to permit persons to whom the Software is furnished to do so,
** subject to the following conditions:
**
** The above copyright notice including the dates of first publication and either this
** permission notice or a reference to http://oss.sgi.com/projects/FreeB/ shall be
** included in all copies or substantial portions of the Software.
**
** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
** INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
** PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL SILICON GRAPHICS, INC.
** BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
** OR OTHER DEALINGS IN THE SOFTWARE.
**
** Except as contained in this notice, the name of Silicon Graphics, Inc. shall not
** be used in advertising or otherwise to promote the sale, use or other dealings in
** this Software without prior written authorization from Silicon Graphics, Inc.
*/
/*
** Original Author: Eric Veach, July 1994.
** libtess2: Mikko Mononen, http://code.google.com/p/libtess2/.
** LibTessDotNet: Remi Gillig, https://github.com/speps/LibTessDotNet
*/
using System;
using System.Diagnostics;
namespace UnityEngine.Experimental.Rendering.Universal
{
#if DOUBLE
using Real = System.Double;
namespace LibTessDotNet.Double
#else
using Real = System.Single;
namespace LibTessDotNet
#endif
{
internal static class Geom
{
public static bool IsWindingInside(WindingRule rule, int n)
{
switch (rule)
{
case WindingRule.EvenOdd:
return (n & 1) == 1;
case WindingRule.NonZero:
return n != 0;
case WindingRule.Positive:
return n > 0;
case WindingRule.Negative:
return n < 0;
case WindingRule.AbsGeqTwo:
return n >= 2 || n <= -2;
}
throw new Exception("Wrong winding rule");
}
public static bool VertCCW(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w)
{
return (u._s * (v._t - w._t) + v._s * (w._t - u._t) + w._s * (u._t - v._t)) >= 0.0f;
}
public static bool VertEq(MeshUtils.Vertex lhs, MeshUtils.Vertex rhs)
{
return lhs._s == rhs._s && lhs._t == rhs._t;
}
public static bool VertLeq(MeshUtils.Vertex lhs, MeshUtils.Vertex rhs)
{
return (lhs._s < rhs._s) || (lhs._s == rhs._s && lhs._t <= rhs._t);
}
///
/// Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
/// evaluates the t-coord of the edge uw at the s-coord of the vertex v.
/// Returns v->t - (uw)(v->s), ie. the signed distance from uw to v.
/// If uw is vertical (and thus passes thru v), the result is zero.
///
/// The calculation is extremely accurate and stable, even when v
/// is very close to u or w. In particular if we set v->t = 0 and
/// let r be the negated result (this evaluates (uw)(v->s)), then
/// r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
///
public static Real EdgeEval(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w)
{
Debug.Assert(VertLeq(u, v) && VertLeq(v, w));
var gapL = v._s - u._s;
var gapR = w._s - v._s;
if (gapL + gapR > 0.0f)
{
if (gapL < gapR)
{
return (v._t - u._t) + (u._t - w._t) * (gapL / (gapL + gapR));
}
else
{
return (v._t - w._t) + (w._t - u._t) * (gapR / (gapL + gapR));
}
}
/* vertical line */
return 0;
}
///
/// Returns a number whose sign matches EdgeEval(u,v,w) but which
/// is cheaper to evaluate. Returns > 0, == 0 , or < 0
/// as v is above, on, or below the edge uw.
///
public static Real EdgeSign(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w)
{
Debug.Assert(VertLeq(u, v) && VertLeq(v, w));
var gapL = v._s - u._s;
var gapR = w._s - v._s;
if (gapL + gapR > 0.0f)
{
return (v._t - w._t) * gapL + (v._t - u._t) * gapR;
}
/* vertical line */
return 0;
}
public static bool TransLeq(MeshUtils.Vertex lhs, MeshUtils.Vertex rhs)
{
return (lhs._t < rhs._t) || (lhs._t == rhs._t && lhs._s <= rhs._s);
}
public static Real TransEval(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w)
{
Debug.Assert(TransLeq(u, v) && TransLeq(v, w));
var gapL = v._t - u._t;
var gapR = w._t - v._t;
if (gapL + gapR > 0.0f)
{
if (gapL < gapR)
{
return (v._s - u._s) + (u._s - w._s) * (gapL / (gapL + gapR));
}
else
{
return (v._s - w._s) + (w._s - u._s) * (gapR / (gapL + gapR));
}
}
/* vertical line */
return 0;
}
public static Real TransSign(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w)
{
Debug.Assert(TransLeq(u, v) && TransLeq(v, w));
var gapL = v._t - u._t;
var gapR = w._t - v._t;
if (gapL + gapR > 0.0f)
{
return (v._s - w._s) * gapL + (v._s - u._s) * gapR;
}
/* vertical line */
return 0;
}
public static bool EdgeGoesLeft(MeshUtils.Edge e)
{
return VertLeq(e._Dst, e._Org);
}
public static bool EdgeGoesRight(MeshUtils.Edge e)
{
return VertLeq(e._Org, e._Dst);
}
public static Real VertL1dist(MeshUtils.Vertex u, MeshUtils.Vertex v)
{
return Math.Abs(u._s - v._s) + Math.Abs(u._t - v._t);
}
public static void AddWinding(MeshUtils.Edge eDst, MeshUtils.Edge eSrc)
{
eDst._winding += eSrc._winding;
eDst._Sym._winding += eSrc._Sym._winding;
}
public static Real Interpolate(Real a, Real x, Real b, Real y)
{
if (a < 0.0f)
{
a = 0.0f;
}
if (b < 0.0f)
{
b = 0.0f;
}
return ((a <= b) ? ((b == 0.0f) ? ((x+y) / 2.0f)
: (x + (y-x) * (a/(a+b))))
: (y + (x-y) * (b/(a+b))));
}
static void Swap(ref MeshUtils.Vertex a, ref MeshUtils.Vertex b)
{
var tmp = a;
a = b;
b = tmp;
}
///
/// Given edges (o1,d1) and (o2,d2), compute their point of intersection.
/// The computed point is guaranteed to lie in the intersection of the
/// bounding rectangles defined by each edge.
///
public static void EdgeIntersect(MeshUtils.Vertex o1, MeshUtils.Vertex d1, MeshUtils.Vertex o2, MeshUtils.Vertex d2, MeshUtils.Vertex v)
{
// This is certainly not the most efficient way to find the intersection
// of two line segments, but it is very numerically stable.
//
// Strategy: find the two middle vertices in the VertLeq ordering,
// and interpolate the intersection s-value from these. Then repeat
// using the TransLeq ordering to find the intersection t-value.
if (!VertLeq(o1, d1)) { Swap(ref o1, ref d1); }
if (!VertLeq(o2, d2)) { Swap(ref o2, ref d2); }
if (!VertLeq(o1, o2)) { Swap(ref o1, ref o2); Swap(ref d1, ref d2); }
if (!VertLeq(o2, d1))
{
// Technically, no intersection -- do our best
v._s = (o2._s + d1._s) / 2.0f;
}
else if (VertLeq(d1, d2))
{
// Interpolate between o2 and d1
var z1 = EdgeEval(o1, o2, d1);
var z2 = EdgeEval(o2, d1, d2);
if (z1 + z2 < 0.0f)
{
z1 = -z1;
z2 = -z2;
}
v._s = Interpolate(z1, o2._s, z2, d1._s);
}
else
{
// Interpolate between o2 and d2
var z1 = EdgeSign(o1, o2, d1);
var z2 = -EdgeSign(o1, d2, d1);
if (z1 + z2 < 0.0f)
{
z1 = -z1;
z2 = -z2;
}
v._s = Interpolate(z1, o2._s, z2, d2._s);
}
// Now repeat the process for t
if (!TransLeq(o1, d1)) { Swap(ref o1, ref d1); }
if (!TransLeq(o2, d2)) { Swap(ref o2, ref d2); }
if (!TransLeq(o1, o2)) { Swap(ref o1, ref o2); Swap(ref d1, ref d2); }
if (!TransLeq(o2, d1))
{
// Technically, no intersection -- do our best
v._t = (o2._t + d1._t) / 2.0f;
}
else if (TransLeq(d1, d2))
{
// Interpolate between o2 and d1
var z1 = TransEval(o1, o2, d1);
var z2 = TransEval(o2, d1, d2);
if (z1 + z2 < 0.0f)
{
z1 = -z1;
z2 = -z2;
}
v._t = Interpolate(z1, o2._t, z2, d1._t);
}
else
{
// Interpolate between o2 and d2
var z1 = TransSign(o1, o2, d1);
var z2 = -TransSign(o1, d2, d1);
if (z1 + z2 < 0.0f)
{
z1 = -z1;
z2 = -z2;
}
v._t = Interpolate(z1, o2._t, z2, d2._t);
}
}
}
}
}