/* ** SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008) ** Copyright (C) 2011 Silicon Graphics, Inc. ** All Rights Reserved. ** ** Permission is hereby granted, free of charge, to any person obtaining a copy ** of this software and associated documentation files (the "Software"), to deal ** in the Software without restriction, including without limitation the rights ** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies ** of the Software, and to permit persons to whom the Software is furnished to do so, ** subject to the following conditions: ** ** The above copyright notice including the dates of first publication and either this ** permission notice or a reference to http://oss.sgi.com/projects/FreeB/ shall be ** included in all copies or substantial portions of the Software. ** ** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, ** INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A ** PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL SILICON GRAPHICS, INC. ** BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, ** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE ** OR OTHER DEALINGS IN THE SOFTWARE. ** ** Except as contained in this notice, the name of Silicon Graphics, Inc. shall not ** be used in advertising or otherwise to promote the sale, use or other dealings in ** this Software without prior written authorization from Silicon Graphics, Inc. */ /* ** Original Author: Eric Veach, July 1994. ** libtess2: Mikko Mononen, http://code.google.com/p/libtess2/. ** LibTessDotNet: Remi Gillig, https://github.com/speps/LibTessDotNet */ using System; using System.Diagnostics; namespace UnityEngine.Experimental.Rendering.Universal { #if DOUBLE using Real = System.Double; namespace LibTessDotNet.Double #else using Real = System.Single; namespace LibTessDotNet #endif { internal static class Geom { public static bool IsWindingInside(WindingRule rule, int n) { switch (rule) { case WindingRule.EvenOdd: return (n & 1) == 1; case WindingRule.NonZero: return n != 0; case WindingRule.Positive: return n > 0; case WindingRule.Negative: return n < 0; case WindingRule.AbsGeqTwo: return n >= 2 || n <= -2; } throw new Exception("Wrong winding rule"); } public static bool VertCCW(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w) { return (u._s * (v._t - w._t) + v._s * (w._t - u._t) + w._s * (u._t - v._t)) >= 0.0f; } public static bool VertEq(MeshUtils.Vertex lhs, MeshUtils.Vertex rhs) { return lhs._s == rhs._s && lhs._t == rhs._t; } public static bool VertLeq(MeshUtils.Vertex lhs, MeshUtils.Vertex rhs) { return (lhs._s < rhs._s) || (lhs._s == rhs._s && lhs._t <= rhs._t); } /// /// Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w), /// evaluates the t-coord of the edge uw at the s-coord of the vertex v. /// Returns v->t - (uw)(v->s), ie. the signed distance from uw to v. /// If uw is vertical (and thus passes thru v), the result is zero. /// /// The calculation is extremely accurate and stable, even when v /// is very close to u or w. In particular if we set v->t = 0 and /// let r be the negated result (this evaluates (uw)(v->s)), then /// r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t). /// public static Real EdgeEval(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w) { Debug.Assert(VertLeq(u, v) && VertLeq(v, w)); var gapL = v._s - u._s; var gapR = w._s - v._s; if (gapL + gapR > 0.0f) { if (gapL < gapR) { return (v._t - u._t) + (u._t - w._t) * (gapL / (gapL + gapR)); } else { return (v._t - w._t) + (w._t - u._t) * (gapR / (gapL + gapR)); } } /* vertical line */ return 0; } /// /// Returns a number whose sign matches EdgeEval(u,v,w) but which /// is cheaper to evaluate. Returns > 0, == 0 , or < 0 /// as v is above, on, or below the edge uw. /// public static Real EdgeSign(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w) { Debug.Assert(VertLeq(u, v) && VertLeq(v, w)); var gapL = v._s - u._s; var gapR = w._s - v._s; if (gapL + gapR > 0.0f) { return (v._t - w._t) * gapL + (v._t - u._t) * gapR; } /* vertical line */ return 0; } public static bool TransLeq(MeshUtils.Vertex lhs, MeshUtils.Vertex rhs) { return (lhs._t < rhs._t) || (lhs._t == rhs._t && lhs._s <= rhs._s); } public static Real TransEval(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w) { Debug.Assert(TransLeq(u, v) && TransLeq(v, w)); var gapL = v._t - u._t; var gapR = w._t - v._t; if (gapL + gapR > 0.0f) { if (gapL < gapR) { return (v._s - u._s) + (u._s - w._s) * (gapL / (gapL + gapR)); } else { return (v._s - w._s) + (w._s - u._s) * (gapR / (gapL + gapR)); } } /* vertical line */ return 0; } public static Real TransSign(MeshUtils.Vertex u, MeshUtils.Vertex v, MeshUtils.Vertex w) { Debug.Assert(TransLeq(u, v) && TransLeq(v, w)); var gapL = v._t - u._t; var gapR = w._t - v._t; if (gapL + gapR > 0.0f) { return (v._s - w._s) * gapL + (v._s - u._s) * gapR; } /* vertical line */ return 0; } public static bool EdgeGoesLeft(MeshUtils.Edge e) { return VertLeq(e._Dst, e._Org); } public static bool EdgeGoesRight(MeshUtils.Edge e) { return VertLeq(e._Org, e._Dst); } public static Real VertL1dist(MeshUtils.Vertex u, MeshUtils.Vertex v) { return Math.Abs(u._s - v._s) + Math.Abs(u._t - v._t); } public static void AddWinding(MeshUtils.Edge eDst, MeshUtils.Edge eSrc) { eDst._winding += eSrc._winding; eDst._Sym._winding += eSrc._Sym._winding; } public static Real Interpolate(Real a, Real x, Real b, Real y) { if (a < 0.0f) { a = 0.0f; } if (b < 0.0f) { b = 0.0f; } return ((a <= b) ? ((b == 0.0f) ? ((x+y) / 2.0f) : (x + (y-x) * (a/(a+b)))) : (y + (x-y) * (b/(a+b)))); } static void Swap(ref MeshUtils.Vertex a, ref MeshUtils.Vertex b) { var tmp = a; a = b; b = tmp; } /// /// Given edges (o1,d1) and (o2,d2), compute their point of intersection. /// The computed point is guaranteed to lie in the intersection of the /// bounding rectangles defined by each edge. /// public static void EdgeIntersect(MeshUtils.Vertex o1, MeshUtils.Vertex d1, MeshUtils.Vertex o2, MeshUtils.Vertex d2, MeshUtils.Vertex v) { // This is certainly not the most efficient way to find the intersection // of two line segments, but it is very numerically stable. // // Strategy: find the two middle vertices in the VertLeq ordering, // and interpolate the intersection s-value from these. Then repeat // using the TransLeq ordering to find the intersection t-value. if (!VertLeq(o1, d1)) { Swap(ref o1, ref d1); } if (!VertLeq(o2, d2)) { Swap(ref o2, ref d2); } if (!VertLeq(o1, o2)) { Swap(ref o1, ref o2); Swap(ref d1, ref d2); } if (!VertLeq(o2, d1)) { // Technically, no intersection -- do our best v._s = (o2._s + d1._s) / 2.0f; } else if (VertLeq(d1, d2)) { // Interpolate between o2 and d1 var z1 = EdgeEval(o1, o2, d1); var z2 = EdgeEval(o2, d1, d2); if (z1 + z2 < 0.0f) { z1 = -z1; z2 = -z2; } v._s = Interpolate(z1, o2._s, z2, d1._s); } else { // Interpolate between o2 and d2 var z1 = EdgeSign(o1, o2, d1); var z2 = -EdgeSign(o1, d2, d1); if (z1 + z2 < 0.0f) { z1 = -z1; z2 = -z2; } v._s = Interpolate(z1, o2._s, z2, d2._s); } // Now repeat the process for t if (!TransLeq(o1, d1)) { Swap(ref o1, ref d1); } if (!TransLeq(o2, d2)) { Swap(ref o2, ref d2); } if (!TransLeq(o1, o2)) { Swap(ref o1, ref o2); Swap(ref d1, ref d2); } if (!TransLeq(o2, d1)) { // Technically, no intersection -- do our best v._t = (o2._t + d1._t) / 2.0f; } else if (TransLeq(d1, d2)) { // Interpolate between o2 and d1 var z1 = TransEval(o1, o2, d1); var z2 = TransEval(o2, d1, d2); if (z1 + z2 < 0.0f) { z1 = -z1; z2 = -z2; } v._t = Interpolate(z1, o2._t, z2, d1._t); } else { // Interpolate between o2 and d2 var z1 = TransSign(o1, o2, d1); var z2 = -TransSign(o1, d2, d1); if (z1 + z2 < 0.0f) { z1 = -z1; z2 = -z2; } v._t = Interpolate(z1, o2._t, z2, d2._t); } } } } }