#ifndef GERSTNER_WAVES_INCLUDED #define GERSTNER_WAVES_INCLUDED uniform uint _WaveCount; // how many waves, set via the water component uniform float4 _WaveData[10]; // the data for the waves, x=amplitude, y=direction, z=wavelength, w=omniDir set via the water component uniform float4 _WaveData2[10]; // more data, x=omnidirX, y=omnidirZ struct WaveStruct { float3 position; float3 normal; }; WaveStruct GerstnerWave(half2 pos, float waveCountMulti, float amplitude, half direction, half wavelength, float omni, half2 omniPos) { WaveStruct waveOut; ////////////////////////////////wave value calculations////////////////////////// half3 wave = 0; // wave vector half w = 6.28318 / wavelength; // 2pi over wavelength(hardcoded) half wSpeed = sqrt(9.8 * w); // frequency of the wave based off wavelength half peak = 1; // peak value, 1 is the sharpest peaks half qi = peak / (amplitude * w * _WaveCount); direction = radians(direction); // convert the incoming degrees to radians, for directional waves half2 dirWaveInput = float2(sin(direction), cos(direction)) * (1 - omni); half2 omniWaveInput = (pos - omniPos) * omni; half2 windDir = normalize(dirWaveInput + omniWaveInput); // calculate wind direction half dir = dot(windDir, pos - (omniPos * omni)); // calculate a gradient along the wind direction ////////////////////////////position output calculations///////////////////////// half calc = dir * w + -_Time.y * wSpeed; // the wave calculation float cosCalc = cos(calc); // cosine version(used for horizontal undulation) float sinCalc = sin(calc); // sin version(used for vertical undulation) // calculate the offsets for the current point wave.xz = qi * amplitude * windDir.xy * cosCalc; wave.y = (((sinCalc * 0.5 + 0.5) * amplitude)) * waveCountMulti;// the height is divided by the number of waves ////////////////////////////normal output calculations///////////////////////// half wa = w * amplitude; // normal vector float3 n = float3(-(windDir.xy * wa * cosCalc), 1-(qi * wa * sinCalc)); ////////////////////////////////assign to output/////////////////////////////// waveOut.position = wave * saturate(amplitude * 10000); waveOut.normal = (n * waveCountMulti) * amplitude; return waveOut; } inline void SampleWaves(float3 position, half opacity, out WaveStruct waveOut) { half2 pos = position.xz; WaveStruct waves[10]; waveOut.position = 0; half waveCountMulti = 1.0 / _WaveCount; for(uint i = 0; i < _WaveCount; i++) { waves[i] = GerstnerWave(pos, waveCountMulti, _WaveData[i].x, _WaveData[i].y, _WaveData[i].z, _WaveData[i].w, half2(_WaveData2[i].x, _WaveData2[i].y)); // calculate the wave waveOut.position += waves[i].position; // add the position waveOut.normal += waves[i].normal; // add the normal } } #endif // GERSTNER_WAVES_INCLUDED