#ifndef GERSTNER_WAVES_INCLUDED #define GERSTNER_WAVES_INCLUDED uniform uint _WaveCount; // how many waves, set via the water component float _GlobalTime; // global scene time struct Wave { half amplitude; half direction; half wavelength; half2 origin; half omni; }; #if defined(USE_STRUCTURED_BUFFER) StructuredBuffer _WaveDataBuffer; #else half4 waveData[20]; // 0-9 amplitude, direction, wavelength, omni, 10-19 origin.xy #endif struct WaveStruct { float3 position; float3 normal; }; WaveStruct GerstnerWave(half2 pos, float waveCountMulti, half amplitude, half direction, half wavelength, half omni, half2 omniPos) { WaveStruct waveOut; ////////////////////////////////wave value calculations////////////////////////// half3 wave = 0; // wave vector half w = 6.28318 / wavelength; // 2pi over wavelength(hardcoded) half wSpeed = sqrt(9.8 * w); // frequency of the wave based off wavelength half peak = 1; // peak value, 1 is the sharpest peaks half qi = peak / (amplitude * w * _WaveCount); direction = radians(direction); // convert the incoming degrees to radians, for directional waves half2 dirWaveInput = half2(sin(direction), cos(direction)) * (1 - omni); half2 omniWaveInput = (pos - omniPos) * omni; half2 windDir = normalize(dirWaveInput + omniWaveInput); // calculate wind direction half dir = dot(windDir, pos - (omniPos * omni)); // calculate a gradient along the wind direction ////////////////////////////position output calculations///////////////////////// half calc = dir * w + -_GlobalTime * wSpeed; // the wave calculation half cosCalc = cos(calc); // cosine version(used for horizontal undulation) half sinCalc = sin(calc); // sin version(used for vertical undulation) // calculate the offsets for the current point wave.xz = qi * amplitude * windDir.xy * cosCalc; wave.y = ((sinCalc * amplitude)) * waveCountMulti;// the height is divided by the number of waves ////////////////////////////normal output calculations///////////////////////// half wa = w * amplitude; // normal vector half3 n = half3(-(windDir.xy * wa * cosCalc), 1-(qi * wa * sinCalc)); ////////////////////////////////assign to output/////////////////////////////// waveOut.position = wave * saturate(amplitude * 10000); waveOut.normal = (n * waveCountMulti) * amplitude; return waveOut; } inline void SampleWaves(float3 position, half opacity, out WaveStruct waveOut) { half2 pos = position.xz; WaveStruct waves[10]; waveOut.position = 0; waveOut.normal = 0; half waveCountMulti = 1.0 / _WaveCount; half3 opacityMask = saturate(half3(3, 1, 3) * opacity); UNITY_LOOP for(uint i = 0; i < _WaveCount; i++) { #if defined(USE_STRUCTURED_BUFFER) waves[i] = GerstnerWave(pos, waveCountMulti, _WaveDataBuffer[i].amplitude, _WaveDataBuffer[i].direction, _WaveDataBuffer[i].wavelength, _WaveDataBuffer[i].omni, _WaveDataBuffer[i].origin); // calculate the wave #else waves[i] = GerstnerWave(pos, waveCountMulti, waveData[i].x, waveData[i].y, waveData[i].z, waveData[i].w, waveData[i + 10].xy); // calculate the wave #endif waveOut.position += waves[i].position * opacityMask; // add the position waveOut.normal += waves[i].normal * opacityMask; // add the normal } } #endif // GERSTNER_WAVES_INCLUDED