This repository is forked from Boat Attack and converted Unity editor version to China edition: 2019.4.28f1c1(and above versions) to enable Auto-Streaming capability.
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 

108 行
3.3 KiB

#ifndef GERSTNER_WAVES_INCLUDED
#define GERSTNER_WAVES_INCLUDED
uniform uint _WaveCount; // how many waves, set via the water component
struct Wave
{
half amplitude;
half direction;
half wavelength;
half2 origin;
half omni;
};
#if defined(USE_STRUCTURED_BUFFER)
StructuredBuffer<Wave> _WaveDataBuffer;
#else
half4 waveData[20]; // 0-9 amplitude, direction, wavelength, omni, 10-19 origin.xy
#endif
struct WaveStruct
{
float3 position;
float3 normal;
};
WaveStruct GerstnerWave(half2 pos, float waveCountMulti, half amplitude, half direction, half wavelength, half omni, half2 omniPos)
{
WaveStruct waveOut;
#if defined(_STATIC_WATER)
float time = 0;
#else
float time = _Time.y;
#endif
////////////////////////////////wave value calculations//////////////////////////
half3 wave = 0; // wave vector
half w = 6.28318 / wavelength; // 2pi over wavelength(hardcoded)
half wSpeed = sqrt(9.8 * w); // frequency of the wave based off wavelength
half peak = 1.5; // peak value, 1 is the sharpest peaks
half qi = peak / (amplitude * w * _WaveCount);
direction = radians(direction); // convert the incoming degrees to radians, for directional waves
half2 dirWaveInput = half2(sin(direction), cos(direction)) * (1 - omni);
half2 omniWaveInput = (pos - omniPos) * omni;
half2 windDir = normalize(dirWaveInput + omniWaveInput); // calculate wind direction
half dir = dot(windDir, pos - (omniPos * omni)); // calculate a gradient along the wind direction
////////////////////////////position output calculations/////////////////////////
half calc = dir * w + -time * wSpeed; // the wave calculation
half cosCalc = cos(calc); // cosine version(used for horizontal undulation)
half sinCalc = sin(calc); // sin version(used for vertical undulation)
// calculate the offsets for the current point
wave.xz = qi * amplitude * windDir.xy * cosCalc;
wave.y = ((sinCalc * amplitude)) * waveCountMulti;// the height is divided by the number of waves
////////////////////////////normal output calculations/////////////////////////
half wa = w * amplitude;
// normal vector
half3 n = half3(-(windDir.xy * wa * cosCalc),
1-(qi * wa * sinCalc));
////////////////////////////////assign to output///////////////////////////////
waveOut.position = wave * saturate(amplitude * 10000);
waveOut.normal = (n.xzy * waveCountMulti);
return waveOut;
}
inline void SampleWaves(float3 position, half opacity, out WaveStruct waveOut)
{
half2 pos = position.xz;
waveOut.position = 0;
waveOut.normal = 0;
half waveCountMulti = 1.0 / _WaveCount;
half3 opacityMask = saturate(half3(3, 3, 1) * opacity);
UNITY_LOOP
for(uint i = 0; i < _WaveCount; i++)
{
#if defined(USE_STRUCTURED_BUFFER)
Wave w = _WaveDataBuffer[i];
#else
Wave w;
w.amplitude = waveData[i].x;
w.direction = waveData[i].y;
w.wavelength = waveData[i].z;
w.omni = waveData[i].w;
w.origin = waveData[i + 10].xy;
#endif
WaveStruct wave = GerstnerWave(pos,
waveCountMulti,
w.amplitude,
w.direction,
w.wavelength,
w.omni,
w.origin); // calculate the wave
waveOut.position += wave.position; // add the position
waveOut.normal += wave.normal; // add the normal
}
waveOut.position *= opacityMask;
waveOut.normal *= half3(opacity, 1, opacity);
}
#endif // GERSTNER_WAVES_INCLUDED